• Ultra-compact Silicon Multimode Waveguide Bends Based on Special Curves for Dual Polarizations

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The multimode waveguide bends (MWBs) with very compact sizes are the key building blocks in the applications of different mode-division multiplexing (MDM) systems. To further increase the transmission capacity, the silicon multimode waveguide bends for dual polarizations are of particular interest considering the very distinct mode behaviors under different polarizations in the silicon waveguides. Seldom silicon MWBs suitable for both polarizations have been studied. In this paper we analyze several dual-polarization-MWBs based on different bending curve functions. These special curve-based silicon MWBs have the advantages of easy fabrication and low loss compared with other structures based on the subwavelength structures such as gratings. A comparison is made between the free-form curve, Bezier curve, and Euler curve, which are used in the bending region instead of a conventional arc. The transmission spectra of the first three TE and TM modes in the silicon multimode waveguide with a core thickness of 340 nm are investigated. The simulation results indicate that in the premise of the same effective radius which is only 10 in this paper, the 6-mode MWB based on the free-form curve has the optimal performances, including an extremely low loss below 0.052dB and low crosstalk below -25.97dB for all six modes in the wide band of 1500-1600 nm. The MWBs based on the Bezier and Euler curve have degraded performances in terms of the loss and crosstalk. The results of this paper provide an efficient design method of the polarization insensitive silicon MWBs, which may leverage the researches for establishing complicated optical transmission systems incorporating both the MDM and polarization-division multiplexing (PDM) technology.

  • Spatiotemporal mode-locking and photonic flywheel in multimode microresonators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dissipative Kerr soliton (DKS) frequency combs - also known as microcombs - have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only add new degrees of freedom to ultrafast laser technology, but also provide new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML for the first time to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry-Perot microresonator based on graded index multimode fiber (GRIN-MMF). Using the intermodal stimulated Brillouin scattering, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond represent improvements of 25x and 2.5x, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP microresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

  • Probing rotated Weyl physics on nonlinear lithium niobate-on-insulator chips

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states (TISs) or not, is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.

  • Automated turnkey microcomb for low-noise microwave synthesis

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Microresonator-based optical frequency comb (microcomb) has the potential to revolutionize the accuracy of frequency synthesizer in radar and communication applications. However, fundamental limit exists for low noise microcomb generation, especially in low size, weight, power and cost (SWaP-C) package. Here we resolve this limit, by the demonstration of an automated turnkey microcomb, operating close to its low quantum-limited phase noise, within a compact setup size of 85 mm * 90 mm * 25 mm. High quality factor fiber Fabry-Perot resonator (FFPR), with Q up to 4.0 * 10^9, is the key for both low quantum noise and pump noise limit, in the diode-pump case in a self-injection locking scheme. Low phase noise of -80 and -105 dBc/Hz at 100 Hz, -106 and -125 dBc/Hz at 1 kHz, -133 and -148 dBc/Hz at 10 kHz is achieved at 10.1 GHz and 1.7 GHz repetition frequencies, respectively. With the simultaneous automated turnkey, low-noise and direct-diode-pump capability, our microcomb is ready to be used as a low-noise frequency synthesizer with low SWaP-C and thus field deployability.

  • Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A highly efficient on-chip acousto-optic modulator, as a key component, occupies an exceptional position in microwave-to-optical conversion. Homogeneous thin-film lithium niobate is preferentially employed to build the suspended configuration forming the acoustic resonant cavity to improve the modulation efficiency of the device. However, the limited cavity length and complex fabrication recipe of the suspended prototype restrain further breakthrough in the modulation efficiency and impose challenges for waveguide fabrication. In this work, based on a nonsuspended thin-film lithium niobate-chalcogenide glass hybrid Mach-Zehnder interferometer waveguide platform, we propose and demonstrate a built-in push-pull acousto-optic modulator with a half-wave-voltage-length product as low as 0.03 V cm, presenting a modulation efficiency comparable to that of the state-of-the-art suspended counterpart. Based on the advantage of low power consumption, a microwave modulation link is demonstrated using our developed built-in push-pull acousto-optic modulator. The nontrivial acousto-optic modulation performance benefits from the superior photoelastic property of the chalcogenide membrane and the completely bidirectional participation of the antisymmetric Rayleigh surface acoustic wave mode excited by the impedance-matched interdigital transducer, overcoming the issue of amplitude differences of surface acoustic waves applied to the Mach-Zehnder interferometer two arms in traditional push-pull acousto-optic modulators.

  • High speed free-space optical communication using standard fiber communication component without optical amplification

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-space optical communication (FSO) can achieve fast, secure and license-free communication without need for physical cables, making it a cost-effective, energy-efficient and flexible solution when the fiber connection is absent. To establish FSO connection on-demand, it is essential to build portable FSO devices with compact structure and light weight. Here, we develop a miniaturized FSO system and realize 9.16 Gbps FSO between two nodes that is 1 km apart, using a commercial fiber-coupled optical transceiver module with no optical amplification. Basing on the home-made compact 90 mm-diameter acquisition, pointing and tracking (APT) system with four-stage close-loop feedback, the link tracking error is controlled at 3 {\mu}rad and results an average coupling loss of 13.7 dB. Such loss is within the tolerance of the commercial optical communication modules, and without the need of optical amplifiers, which contributes to the low system weight and power consumption. As a result, a single FSO device weighs only about 12 kg, making it compact and portable for potential application in high-speed wireless communication. Our FSO link has been tested up to 4 km, with link loss of 18 dB in the foggy weather in Nanjing, that shows longer distances can be covered with optical amplification.