• Nonlinearity enabled higher-dimensional exceptional topology

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The role of nonlinearity on topology has been investigated extensively in Hermitian systems, while nonlinearity has only been used as a tuning knob in a PT symmetric non-Hermitian system. Here, in our work, we show that nonlinearity plays a crucial role in forming topological singularities of non-Hermitian systems. We provide a simple and intuitive example by demonstrating with both theory and circuit experiments an exceptional nexus (EX), a higher-order exceptional point with a hybrid topological invariant (HTI), within only two coupled resonators with the aid of nonlinear gain. Phase rigidities are constructed to confirm the HTI in our nonlinear system, and the anisotropic critical behavior of the eigenspectra is verified with experiments. Our findings lead to advances in the fundamental understanding of the peculiar topology of nonlinear non-Hermitian systems, possibly opening new avenues for applications.

  • Non-Dispersive Space-Time Wave Packets Propagating in Dispersive Media

    分类: 光学 >> 量子光学 提交时间: 2023-02-25

    摘要: Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the spread in time caused by material dispersion. Furthermore, the law of anomalous refraction for space-time wave packets is generalized to the weakly dispersive situation. These results reveal new potential of space-time wave packets for the applications in real dispersive media.

  • Double-bowl State in photonic Dirac nodal line semimetal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The past decade has seen a proliferation of topological materials for both insulators and semimetals in electronic systems and classical waves. Topological semimetals exhibit topologically protected band degeneracies, such as nodal points and nodal lines. Dirac nodal line semimetals (DNLS), which own four-fold line degeneracy, have drawn particular attention. DNLSs have been studied in electronic systems but there is no photonic DNLS. Here in this work, we provide a new mechanism which is unique for photonic systems to investigate a stringent photonic DNLS. When truncated, the photonic DNLS exhibits double-bowl states (DBS), which comprises two sets of perpendicularly polarized surface states. In sharp contrast to nondegenerate surface states in other photonic systems, here the two sets of surface states are almost degenerate over the whole spectrum range. The DBS and the bulk Dirac nodal ring (DNR) dispersion along the relevant directions, are experimentally resolved.

  • Simulating graphene dynamics in one-dimensional modulated ring array with synthetic dimension

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A dynamically-modulated ring system with frequency as a synthetic dimension has been shown to be a powerful platform to do quantum simulation and explore novel optical phenomena. Here we propose synthetic honeycomb lattice in a one-dimensional ring array under dynamic modulations, with the extra dimension being the frequency of light. Such system is highly re-configurable with modulation. Various physical phenomena associated with graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits important potentials for manipulating photons in different ways. Our work unveils a new platform for constructing the honeycomb lattice in a synthetic space, which holds complex functionalities and could be important for optical signal processing as well as quantum computing.

  • Trapped boundary modes without a well-defined bulk gap

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A boundary mode localized on one side of a finite-size lattice can tunnel to the opposite side which results in unwanted couplings. Conventional wisdom tells that the tunneling probability decays exponentially with the size of the system which thus requires many lattices before eventually becoming negligibly small. Here we show that the tunneling probability for some boundary modes can apparently vanish at specific wave vectors. Meanwhile, the number of wave vectors where tunneling probability vanishes equals the number of lattices perpendicular to the boundary. Thus, similar to bound states in the continuum, a boundary mode can be completely trapped within very few lattices whereat the bulk band gap is not even well-defined. Our idea is proven analytically, and experimentally validated in a dielectric photonic crystal. This feature allows for the extreme flexibility in tunning the hopping between localized states or channels, which facilitates unprecedented manipulation of light such as integrating multiple waveguides without crosstalk and photonic non-abelian braiding.

  • Topological metasurface: From passive toward active and beyond

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Metasurfaces are subwavelength structured thin films consisting of arrays of units that allow the controls of polarization, phase and amplitude of light over a subwavelength thickness. The recent developments in topological photonics have greatly broadened the horizon in designing the metasurfaces for novel functional applications. In this review, we summarize recent progress in the research field of topological metasurfaces, firstly from the perspectives of passive and active in the classical regime, and then in the quantum regime. More specifically, we begin by examining the passive topological phenomena in two-dimensional photonic systems, including both time-reversal broken systems and time-reversal preserved systems. Subsequently, we move to discuss the cutting-edge studies of the active topological metasurfaces, including nonlinear topological metasurfaces and reconfigurable topological metasurfaces. After overviewing the topological metasurfaces in the classical regime, we show how the topological metasurfaces could provide a new platform for quantum information and quantum many-body physics. Finally, we conclude and describe some challenges and future directions of this fast-evolving field.

  • Probing rotated Weyl physics on nonlinear lithium niobate-on-insulator chips

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states (TISs) or not, is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.