• Water storage capacity of the Martian mantle through time

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Water has been stored in the Martian mantle since its formation, primarily in nominally anhydrous minerals. The short-lived early hydrosphere and intermittently flowing water on the Martian surface may have been supplied and replenished by magmatic degassing of water from the mantle. Estimating the water storage capacity of the solid Martian mantle places important constraints on its water inventory and helps elucidate the sources, sinks, and temporal variations of water on Mars. In this study, we applied a bootstrap aggregation method to investigate the effects of iron on water storage capacities in olivine, wadsleyite, and ringwoodite, based on high-pressure experimental data compiled from the literature, and we provide a quantitative estimate of the upper bound of the bulk water storage capacity in the FeO-rich solid Martian mantle. Along a series of areotherms at different mantle potential temperatures ($T_{p}$), we estimated a water storage capacity equal to $9.0_{-2.2} ^{+2.8}$ km Global Equivalent Layer (GEL) for the present-day Martian mantle at $T_{p}$ = 1600 K and $4.9_{-1.5}^{+1.7}$ km GEL for the initial Martian mantle at $T_{p}$ = 1900 K. The water storage capacity of the Martian mantle increases with secular cooling through time, but due to the lack of an efficient water recycling mechanism on Mars, its actual mantle water content may be significantly lower than its water storage capacity today.

  • Comparisons of the core and mantle compositions of earth analogs from different terrestrial planet formation scenarios

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The chemical compositions of Earth's core and mantle provide insight into the processes that led to their formation. N-body simulations, on the other hand, generally do not contain chemical information, and seek to only reproduce the masses and orbits of the terrestrial planets. These simulations can be grouped into four potentially viable scenarios of Solar System formation (Classical, Annulus, Grand Tack, and Early Instability) for which we compile a total of 433 N-body simulations. We relate the outputs of these simulations to the chemistry of Earth's core and mantle using a melt-scaling law combined with a multi-stage model of core formation. We find the compositions of Earth analogs to be largely governed by the fraction of equilibrating embryo cores and the initial embryo masses in N-body simulations. Simulation type may be important when considering magma ocean lifetimes, where Grand Tack simulations have the largest amounts of material accreted after the last giant impact. However, we cannot rule out any accretion scenarios or initial embryo masses due to the sensitivity of Earth's mantle composition to different parameters and the stochastic nature of N-body simulations. Comparing the last embryo impacts experienced by Earth analogs to specific Moon-forming scenarios, we find the characteristics of the Moon-forming impact are dependent on the initial conditions in N-body simulations where larger initial embryo masses promote larger and slower Moon-forming impactors. Mars-sized initial embryos are most consistent with the canonical hit-and-run scenario onto a solid mantle. Our results suggest that constraining the fraction of equilibrating impactor core and the initial embryo masses in N-body simulations could be significant for understanding both Earth's accretion history and characteristics of the Moon-forming impact.