• Anatomy of rocky planets formed by rapid pebble accretion III. Partitioning of volatiles between planetary core, mantle, and atmosphere

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Volatile molecules containing hydrogen, carbon, and nitrogen are key components of planetary atmospheres. In the pebble accretion model for rocky planet formation, these volatile species are accreted during the main planetary formation phase. For this study, we modelled the partitioning of volatiles within a growing planet and the outgassing to the surface. The core stores more than 90\% of the hydrogen and carbon budgets of Earth for realistic values of the partition coefficients of H and C between metal and silicate melts. The magma oceans of Earth and Venus are sufficiently deep to undergo oxidation of ferrous Fe$^{2+}$ to ferric Fe$^{3+}$. This increased oxidation state leads to the outgassing of primarily CO$_2$ and H$_2$O from the magma ocean of Earth. In contrast, the oxidation state of Mars' mantle remains low and the main outgassed hydrogen carrier is H$_2$. This hydrogen easily escapes the atmosphere due to the irradiation from the young Sun in XUV wavelengths, dragging with it the majority of the CO, CO$_2$, H$_2$O, and N$_2$ contents of the atmosphere. A small amount of surface water is maintained on Mars, in agreement with proposed ancient ocean shorelines, for moderately low values of the mantle oxidation. Nitrogen partitions relatively evenly between the core and the atmosphere due to its extremely low solubility in magma; the burial of large reservoirs of nitrogen in the core is thus not possible. The overall low N contents of Earth disagree with the high abundance of N in all chondrite classes and favours a volatile delivery by pebble snow. Our model of rapid rocky planet formation by pebble accretion displays broad consistency with the volatile contents of the Sun's terrestrial planets. The diversity of the terrestrial planets can therefore be used as benchmark cases to calibrate models of extrasolar rocky planets and their atmospheres.

  • Anatomy of rocky planets formed by rapid pebble accretion I. How icy pebbles determine the core fraction and FeO contents

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a series of papers dedicated to modelling the accretion and differentiation of rocky planets that form by pebble accretion within the lifetime of the protoplanetary disc. In this first paper, we focus on how the accreted ice determines the distribution of iron between the mantle (oxidized FeO and FeO$_{1.5}$) and the core (metallic Fe and FeS). We find that an initial primitive composition of ice-rich material leads, upon heating by the decay of $^{26}$Al, to extensive water flow and the formation of clay minerals inside planetesimals. Metallic iron dissolves in liquid water and precipitates as oxidized magnetite Fe$_3$O$_4$. Further heating by $^{26}$Al destabilizes the clay at a temperature of around 900 K. The released supercritical water ejects the entire water content from the planetesimal. Upon reaching the silicate melting temperature of 1,700 K, planetesimals further differentiate into a core (made mainly of iron sulfide FeS) and a mantle with a high fraction of oxidized iron. We propose that the asteroid Vesta's significant FeO fraction in the mantle is a testimony of its original ice content. We consider Vesta to be a surviving member of the population of protoplanets from which Mars, Earth, and Venus grew by pebble accretion. We show that the increase in the core mass fraction and decrease in FeO contents with increasing planetary mass (in the sequence Vesta -- Mars -- Earth) is naturally explained by the growth of terrestrial planets outside of the water ice line through accretion of pebbles containing iron that was dominantly in metallic form with an intrinsically low oxidation degree.

  • Anatomy of rocky planets formed by rapid pebble accretion II. Differentiation by accretion energy and thermal blanketing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We explore the heating and differentiation of rocky planets that grow by rapid pebble accretion. Our terrestrial planets grow outside of the ice line and initially accrete 28\% water ice by mass. The accretion of water stops after the protoplanet reaches a mass of $0.01\,M_{\rm E}$ where the gas envelope becomes hot enough to sublimate the ice and transport the vapour back to the protoplanetary disc by recycling flows. The energy released by the decay of $^{26}$Al melts the accreted ice to form clay (phyllosilicates), oxidized iron (FeO), and a water surface layer with ten times the mass of Earth's modern oceans. The ocean--atmosphere system undergoes a run-away greenhouse effect after the effective accretion temperature crosses a threshold of around 300 K. The run-away greenhouse process vaporizes the water layer, thereby trapping the accretion heat and heating the surface to more than 6,000 K. This causes the upper part of the mantle to melt and form a global magma ocean. Metal melt separates from silicate melt and sediments towards the bottom of the magma ocean; the gravitational energy released by the sedimentation leads to positive feedback where the beginning differentiation of the planet causes the whole mantle to melt and differentiate. All rocky planets thus naturally experience a magma ocean stage. We demonstrate that Earth's small excess of $^{182}$W (the decay product of $^{182}$Hf) relative to the chondrites is consistent with such rapid core formation within 5 Myr followed by equilibration of the W reservoir in Earth's mantle with $^{182}$W-poor material from the core of a planetary-mass impactor, provided that the equilibration degree is at least 25%-50%, depending on the initial Hf/W ratio. The planetary collision must have occurred at least 35 Myr after the main accretion phase of the terrestrial planets.

  • Natural separation of two primordial planetary reservoirs in an expanding solar protoplanetary disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Meteorites display an isotopic composition dichotomy between non-carbonaceous (NC) and carbonaceous (CC) groups, indicating that planetesimal formation in the solar protoplanetary disk occurred in two distinct reservoirs. The prevailing view is that a rapidly formed Jupiter acted as a barrier between these reservoirs. We show a fundamental inconsistency in this model: if Jupiter is an efficient blocker of drifting pebbles, then the interior NC reservoir is depleted by radial drift within a few hundred thousand years. If Jupiter lets material pass it, then the two reservoirs will be mixed. Instead, we demonstrate that the arrival of the CC pebbles in the inner disk is delayed for several million years by the viscous expansion of the protoplanetary disk. Our results support that Jupiter formed in the outer disk (>10 AU) and allowed a considerable amount of CC material to pass it and become accreted by the terrestrial planets.