• The X-ray invisible Universe. A look into the halos undetected by eROSITA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The paper presents the analysis of GAMA spectroscopic groups and clusters detected and undetected in the SRG/eROSITA X-ray map of the eFEDS (eROSITA Final Equatorial Depth Survey) area, in the halo mass range $10^{13}-5x10^{14}$ $M_{\odot}$ and at $z < 0.2$. We compare the X-ray surface brightness profiles of the eROSITA detected groups with the mean stacked profile of the undetected low-mass halos. Overall, we find that the undetected groups exhibit less concentrated X-ray surface brightness, dark matter, and galaxy distributions with respect to the X-ray detected halos. Consistently with the low mass concentration, the magnitude gap indicates that these are younger systems. The later assembly time is confirmed by the bluer average color of the BCG and of the galaxy population with respect to the detected systems. They reside with a higher probability in filaments while X-ray detected low-mass halos favor the nodes of the Cosmic Web. Because of the suppressed X-ray central emission, the undetected systems tend to be X-ray under-luminous at fixed halo mass, and to lie below the $L_X-M_{halo}$ relation. Interestingly, the X-ray detected systems inhabiting the nodes scatter the less around the relation, while those in filaments tend to lie below it. We do not observe any strong relation between the properties of detected and undetected systems with the AGN activity. The fraction of optically selected AGN in the galaxy population is consistent in the two samples. More interestingly, the probability that the BCG hosts a radio AGN is lower in the undetected groups. We, thus, argue that the observed differences between X-ray detected and undetected groups are ascribable to the Cosmic Web, and its role in the halo assembly bias. Our results suggest that the X-ray selection is biased to favor the most concentrated and old systems located in the nodes of the Cosmic Web.

  • Transient obscuration event captured in NGC 3227 IV. Origin of the obscuring cloud variability

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Obscuration events in type I active galactic nuclei (AGN) have been detected more frequently in recent years. The strong flux decrease in the soft X-ray band between observations has been caused by clouds with large column densities transiting our line-of-sight (LOS) and covering the central AGN. Another event has been captured in NGC 3227 at the end of 2019. We aim to determine the nature of the observed spectral variability in 2019 obscuration event. We split the two XMM-Newton observations from 2019 into timing bins of length $\sim$ 10 ks. We used the SPEX code to analyse the 0.35-10 keV EPIC-PN spectra of each timing bin. In the first observation (Obs 1), there is a strong anti-correlation between the column density ($N_H$) of the obscurer and the continuum normalisations of the X-ray power-law and soft Comptonisation components ($N_{pow}$ and $N_{comt}$, respectively). The powerlaw continuum models the hard X-rays produced by the corona, and the Comptonisation component models the soft X-ray excess and emission from the accretion disk. Through further testing we conclude that the continuum is likely to drive the observed variability, but we cannot rule out a possible contribution from NH of the obscurer if it fully transverses across the ionising source within our LOS during the observation. The ionisation parameter ($\xi$) of the obscurer is not easily constrained, and therefore it is not clear whether it varies in response to changes in ionising continuum. The second observation (Obs 2) displays a significantly lower count rate due to the combination of a high NH and covering fraction of the obscurer, and a lower continuum flux. The observed variability seen during the obscuration event of NGC 3227 in 2019 is likely driven by the continuum, but the obscurer varies at the same time, making it difficult to distinguish between the two possibilities with full certainty.