• MaNGA 8313-1901: gas accretion observed in a blue compact dwarf galaxy?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gas accretion is an important process in the evolution of galaxies, but it has limited direct observational evidences. In this paper, we report the detection of a possible ongoing gas accretion event in a Blue Compact Dwarf (BCD) galaxy, MaNGA 8313-1901, observed by the Mapping Nearby Galaxies and Apache Point Observatory (MaNGA) program. This galaxy has a distinct off-centered blue clump to the northeast (the NE clump) that shows low metallicity and enhanced star-formation. The kinematics of the gas in the NE clump also seems to be detached from the host BCD galaxy. Together with the metallicity drop of the NE clump, it suggests that the NE clump likely has an external origin, such as the gas accretion or galaxy interaction, rather than an internal origin, such as an \hii~complex in the disk. After removing the underlying host component, we find that the spectrum of the "pure" clump can match very well with a modeled spectrum containing a stellar population of the young stars ($\le 7$ Myr) only. This may imply that the galaxy is experiencing an accretion of cold gas, instead of a merger event involving galaxies with significant pre-existing old stars. We also find signs of another clump (the SW clump) at the south-west corner of the host galaxy, and the two clumps may share the same origin of gas accretion.

  • The ALMaQUEST Survey XV: The Dependence of the Molecular-to-Atomic Gas Ratios on Resolved Optical Diagnostics

    分类: 天文学 >> 天文学 提交时间: 2024-03-30

    摘要: The atomic-to-molecular gas conversion is a critical step in the baryon cycle of galaxies, which sets the initial conditions for subsequent star formation and influences the multi-phase interstellar medium. We compiled a sample of 94 nearby galaxies with observations of multi-phase gas contents by utilizing public H I, CO, and optical IFU data from the MaNGA survey together with new FAST H I observations. In agreement with previous results, our sample shows that the global molecular-to-atomic gas ratio ($R_{\rm mol} \equiv$ log $M_{\rm H_2}/M_{\rm H\ I}$) is correlated with the global stellar mass surface density $\mu_*$ with a Kendall's $\tau$ coefficient of 0.25 and $p < 10^{-3}$, less tightly but still correlated with stellar mass and NUV$-$ r color, and not related to the specific star formation rate (sSFR). The cold gas distribution and kinematics inferred from the H I and CO global profile asymmetry and shape do not significantly rely on $R_{\rm mol}$. Thanks to the availability of kpc-scale observations of MaNGA, we decompose galaxies into H II, composite, and AGN-dominated regions by using the BPT diagrams. With increasing $R_{\rm mol}$, the fraction of H II regions within 1.5 effective radius decreases slightly; the density distribution in the spatially resolved BPT diagram also changes significantly, suggesting changes in metallicity and ionization states. Galaxies with high $R_{\rm mol}$ tend to have high oxygen abundance, both at one effective radius with a Kendall's $\tau$ coefficient of 0.37 ($p < 10^{-3}$) and their central regions. Among all parameters investigated here, the oxygen abundance at one effective radius has the strongest relation with global $R_{\rm mol}$, but the dependence of gas conversion on gas distribution and galaxy ionization states is weak.