• New insights into the helium star formation channel of AM CVn systems with explanations of Gaia14aae and ZTFJ1637+49

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We model helium-rich stars with solar metallicity ($X=0.7,\:Z=0.02$) progenitors that evolve to form AM Canum Venaticorum systems through a helium-star formation channel, with the aim to explain the observed properties of Gaia14aae and ZTFJ1637+49. We show that semi-degenerate, H-exhausted ($X\leq 10^{-5}$), He-rich ($Y\approx0.98$) donors can be formed after a common envelope evolution (CEE) phase if either additional sources of energy are used to eject the common envelope, or a different formalism of CEE is implemented. We follow the evolution of such binary systems after the CEE phase using the Cambridge stellar evolution code, when they consist of a He-star and a white dwarf accretor, and report that the mass, radius, and mass-transfer rate of the donor, the orbital period of the system, and the lack of hydrogen in the spectrum of Gaia14aae and ZTFJ1637+49 match well with our modelled trajectories wherein, after the CEE phase Roche lobe overflow is governed not only by the angular momentum loss (AML) owing to gravitational wave radiation ($\mathrm{AML_{GR}}$) but also an additional AML owing to $\alpha-\Omega$ dynamos in the donor. This additional AML is modelled with our double-dynamo (DD) model of magnetic braking in the donor star. We explain that this additional AML is just a consequence of extending the DD model from canonical cataclysmic variable donors to evolved donors. We show that none of our modelled trajectories match with Gaia14aae or ZTFJ1637+49 if the systems are modelled only with $\mathrm{AML_{GR}}$.

  • New insights into the helium star formation channel of AM CVn systems with explanations of Gaia14aae and ZTFJ1637+49

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We model helium-rich stars with solar metallicity ($X=0.7,\:Z=0.02$) progenitors that evolve to form AM Canum Venaticorum systems through a helium-star formation channel, with the aim to explain the observed properties of Gaia14aae and ZTFJ1637+49. We show that semi-degenerate, H-exhausted ($X\leq 10^{-5}$), He-rich ($Y\approx0.98$) donors can be formed after a common envelope evolution (CEE) phase if either additional sources of energy are used to eject the common envelope, or a different formalism of CEE is implemented. We follow the evolution of such binary systems after the CEE phase using the Cambridge stellar evolution code, when they consist of a He-star and a white dwarf accretor, and report that the mass, radius, and mass-transfer rate of the donor, the orbital period of the system, and the lack of hydrogen in the spectrum of Gaia14aae and ZTFJ1637+49 match well with our modelled trajectories wherein, after the CEE phase Roche lobe overflow is governed not only by the angular momentum loss (AML) owing to gravitational wave radiation ($\mathrm{AML_{GR}}$) but also an additional AML owing to $\alpha-\Omega$ dynamos in the donor. This additional AML is modelled with our double-dynamo (DD) model of magnetic braking in the donor star. We explain that this additional AML is just a consequence of extending the DD model from canonical cataclysmic variable donors to evolved donors. We show that none of our modelled trajectories match with Gaia14aae or ZTFJ1637+49 if the systems are modelled only with $\mathrm{AML_{GR}}$.

  • Criteria for Dynamical Timescale Mass Transfer of Metal-poor Intermediate-mass Stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The stability criteria of rapid mass transfer and common envelope evolution are fundamental in binary star evolution. They determine the mass, mass ratio and orbital distribution of many important systems, such as X-ray binaries, Type Ia supernovae and merging gravitational wave sources. We use our adiabatic mass-loss model to systematically survey the intermediate-mass stars' thresholds for dynamical-timescale mass transfer. The impact of metallicity on the stellar responses and critical mass ratios is explored. Both tables ($Z=0.001$) and fitting formula ($Z=0.001$ and $Z=0.02$) of critical mass ratios of intermediate-mass stars are provided. An application of our results to intermediate-mass X-ray binaries (IMXBs) is discussed. We find that the predicted upper limit to mass ratios, as a function of orbital period, is consistent with the observed IMXBs that undergo thermal or nuclear timescale mass transfer. According to the observed peak X-ray luminosity $L_\mathrm{X}$, we predict the range of $L_\mathrm{X}$ for IMXBs as a function of the donor mass and the mass transfer timescale.

  • The Common Envelope Evolution Outcome -- A Case Study on Hot Subdwarf B Stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Common envelope evolution (CEE) physics plays a fundamental role in the formation of binary systems, such as mergering stellar gravitational wave sources, pulsar binaries and type Ia supernovae. A precisely constrained CEE has become more important in the age of large surveys and gravitational wave detectors. We use an adiabatic mass loss model to explore how the total energy of the donor changes as a function of the remnant mass. This provides a more self-consistent way to calculate the binding energy of the donor. For comparison, we also calculate the binding energy through integrating the total energy from the core to the surface. The outcome of CEE is constrained by total energy conservation at the point at which both component's radii shrink back within their Roche lobes. We apply our results to 142 hot subdwarf binaries. For shorter orbital period sdBs, the binding energy is highly consistent. For longer orbital period sdBs in our samples, the binding energy can differ by up to a factor of 2. The CE efficiency parameter $\beta_\mathrm{CE}$ becomes smaller than $\alpha_\mathrm{CE}$ for the final orbital period $\log_{10} P_{\mathrm{orb}}/\mathrm{d} > -0.5$. We also find the mass ratios $\log_{10} q$ and CE efficiency parameters $\log_{10} \alpha_{\mathrm{CE}}$ and $\log_{10} \beta_{\mathrm{CE}}$ linearly correlate in sdBs, similarly to De Marco et al. (2010) for post-AGB binaries.