按提交时间
按主题分类
按作者
按机构
  • Negative reflection and negative refraction in biaxial van der Waals materials

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Negative reflection and negative refraction are exotic phenomena that can be achieved by platforms such as double-negative metamaterial, hyperbolic metamaterial, and phase-discontinuity metasurface. Recently, natural biaxial van der Waals (vdW) materials, which support extremely anisotropic, low-loss, and highly confined polaritons from infrared to visible regime, are emerging as promising candidates for planar reflective and refractive optics. Here, we introduce three degrees of freedom, namely interface, crystal direction, and electric tunability to manipulate the reflection and refraction of the polaritons. With broken in-plane symmetry contributed by the interface and crystal direction, distinguished reflection and refraction such as negative and backward reflection, positive and negative refraction could exist simultaneously and exhibit high tunability. The numerical simulations show good consistency with the theoretical analysis. Our findings provide a robust recipe for the realization of negative reflection and refraction in biaxial vdW materials, paving the way for the polaritonics and interface nano-optics.

  • A Fermi-LAT Study of Globular Cluster Dynamical Evolution in the Milky Way: Millisecond Pulsars as the Probe

    分类: 天文学 >> 天文学 提交时间: 2024-02-28 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: Using archival Fermi-LAT data with a time span of ∼12 yr, we study the population of Millisecond Pulsars (MSPs) in Globular Clusters (GlCs) and investigate their dependence on cluster dynamical evolution in the Milky Way. We show that the γ-ray luminosity (Lγ) and emissivity (i.e.,= Lγ/M, with M the cluster mass) are good indicators of the population and abundance of MSPs in GlCs, and they are highly dependent on the dynamical evolution history of the host clusters. Specifically speaking, the dynamically older GlCs with more compact structures are more likely to have larger Lγ and , and these trends can be summarized as strong correlations with cluster stellar encounter rate Γ and the specific encounter rate (Λ = Γ/M), with Lγ ∝ Γ0.70±0.11 and ∝ Λ0.73±0.13 for dynamically normal GlCs. However, as GlCs evolve into deep core collapse, these trends are found to be reversed, implying that strong encounters may have lead to the disruption of Low-Mass X-ray Binaries and ejection of MSPs from core-collapsed systems. Besides, the GlCs are found to exhibit larger  with increasing stellar mass function slope (∝ 10(0.57±0.1)α), decreasing tidal radius () and distances from the Galactic Center (GC, ). These correlations indicate that, as GlCs losing kinetic energy and spiral in toward the GC, tidal stripping and mass segregation have a preference in leading to the loss of normal stars from GlCs, while MSPs are more likely to concentrate to cluster center and be deposited into the GC. Moreover, we gauge  of GlCs is ∼10–1000 times larger than the Galactic bulge, the latter is thought to reside thousands of unresolved MSPs and may be responsible for the GC γ-ray excess, which supports that GlCs are generous contributors to the population of MSPs in the GC.

  • Observation of Full-Parameter Jones Matrix in Bilayer Metasurface

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Metasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2*2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e., degrees of freedom, DOFs) in the Jones matrix determines the limit to what functionalities we can realize. Great efforts have been made to continuously expand the number of DOFs, and a maximal number of six has been achieved recently. However, the realization of 'holy grail' goal with eight DOFs (full free parameters) has been proven as a great challenge so far. Here, we show that by cascading two layer metasurfaces and utilizing the gradient descent optimization algorithm, a spatially varying Jones matrix with eight DOFs is constructed and verified numerically and experimentally in optical frequencies. Such ultimate control unlocks new opportunities to design optical functionalities that are unattainable with previously known methodologies and may find wide potential applications in optical fields.

  • Dielectric metasurface for independent complex-amplitude control of arbitrary two orthogonal states of polarization

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Metasurfaces are planar structures that can manipulate the amplitude, phase and polarization (APP) of light at subwavelength scale. Although various functionalities have been proposed based on metasurface, a most general optical control, i.e., independent complex-amplitude (amplitude and phase) control of arbitrary two orthogonal states of polarizations, has not yet been realized. Such level of optical control can not only cover the various functionalities realized previously, but also enable new functionalities that are not feasible before. Here, we propose a single-layer dielectric metasurface to realize this goal and experimentally demonstrate several advanced functionalities, such as two independent full-color printing images under arbitrary elliptically orthogonal polarizations and dual sets of printing-hologram integrations. Our work opens the way for a wide range of applications in advanced image display, information encoding, and polarization optics.

  • Nonreciprocal thermal radiation in ultrathin magnetized epsilon-near-zero semiconductors

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Spectral/angular emissivity $e$ and absorptivity ${\alpha}$ of an object are widely believed to be identical by Kirchhoff's law of thermal radiation in reciprocal systems, but this introduces an intrinsic and inevitable energy loss for energy conversion and harvesting devices. So far, experimental evidences of breaking this well-known balance are still absent, and previous theoretical proposals are restricted to narrow single-band nonreciprocal radiation. Here we observe for the first time, to our knowledge, the violation of Kirchhoff's law using ultrathin ($0.6$ has been experimentally demonstrated under a moderate external magnetic field. Moreover, based on magnetized ENZ building blocks supporting asymmetrically radiative Berreman and surface ENZ modes, we show versatile shaping of nonreciprocal thermal radiation: single-band, dual-band, and broadband nonreciprocal emission spectra at different wavebands. Our findings of breaking Kirchhoff's law will advance the conventional understanding of emission and absorption processes of natural objects, and lay a solid foundation for more comprehensive studies in designing various nonreciprocal thermal emitters. The reported recipe of diversely shaping nonreciprocal emission will also breed new possibilities in renovating next-generation nonreciprocal energy devices in the areas of solar cells, thermophotovoltaic, radiative cooling, etc.

  • Observation of high-order imaginary Poynting momentum optomechanics in structured light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The imaginary Poynting momentum (IPM) of light has been captivated an unusual origin of optomechanical effects on dipolar magnetoelectric particles, but yet observed in experiments. Here, we report, for the very first time, a whole family of high-order IPM forces for not only magnetoelectric but also generic Mie particles, assisted with their excited higher multipoles within. Such optomechanical phenomena derive from a nonlinear contribution of the IPM to the optical force, and can be remarkable even when the incident IPM is small. We observe the high-order optomechanics in a structured light beam with vortex-like IPM streamlines, which allows the low-order dipolar contribution to be suppressed. Our results provide the first unambiguous evidence of the ponderomotive nature of the IPM, expand the classification of optical forces and open new possibilities for optical forces and micromanipulations.

  • Nonlinear multi-frequency phonon lasers with active levitated optomechanics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Phonon lasers, exploiting coherent amplifications of phonons, have been a cornerstone for exploring nonlinear phononics, imaging nanomaterial structures, and operating phononic devices. Very recently, by levitating a nanosphere in an optical tweezer, a single-mode phonon laser governed by dispersive optomechanical coupling has been demonstrated, assisted by alternating mechanical nonlinear cooling and linear heating. Such levitated optomechanical (LOM) devices, with minimal noises in high vacuum, can allow flexible control of large-mass objects without any internal discrete energy levels. However, untill now, it is still elusive to realize phonon lasing with levitated microscale objects, due to much stronger optical scattering losses. Here, by employing a Yb3+-doped active system, we report the first experiment on nonlinear multi-frequency phonon lasers with a micro-size sphere governed instead by dissipative LOM coupling. In this work, active gain plays a key role since not only 3-order enhancement can be achieved for the amplitude of the fundamental-mode phonon lasing, compared with the passive device, but also nonlinear mechanical harmonics can emerge spontaneously above the lasing threshold. Furthermore, for the first time, coherent correlations of phonons are observed for both the fundamental mode and its harmonics. Our work drives the field of LOM technology into a new regime where it becomes promising to engineer collective motional properties of typical micro-size objects, such as atmospheric particulates and living cells, for a wide range of applications in e.g., acoustic sensing, gravimetry, and inertial navigation.

  • Simultaneously sorting vector vortex beams of 120 modes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Polarization (P), angular index (l), and radius index (p) are three independent degrees of freedom (DoFs) of vector vortex beams, which have been widely used in optical communications, quantum optics, information processing, etc. Although the sorting of one DoF can be achieved efficiently, it is still a great challenge to sort all these DoFs simultaneously in a compact and efficient way. Here, we propose a beam sorter to deal with all these three DoFs simultaneously by using a diffractive deep neural network (D$^2$NN) and experimentally demonstrated the robust sorting of 120 Laguerre-Gaussian (LG) modes using a compact D$^2$NN formed by one spatial light modulator and one mirror only. The proposed beam sorter demonstrates the great potential of D$^2$NN in optical field manipulation and will benefit the diverse applications of vector vortex beams.

  • Design and performance evaluation of a large field-of-view dual-particle time-encoded imager based on a depth-of-interaction detector

    分类: 核科学技术 >> 核探测技术与核电子学 提交时间: 2024-02-23

    摘要: Time-encoded imaging is useful for identifying potential special nuclear materials and other radioactive sources at a distance. In this study, a large field-of-view time-encoded imager was developed for gamma-ray and neutron source hotspot imaging based on a depth-of-interaction (DOI) detector. The imager primarily consists of a DOI detector system and a rotary dual-layer cylindrical coded mask. An EJ276 plastic scintillator coupled with two SiPMs was designed as the DOI detector to increase the field of view and improve the imager performance. The difference in signal time at both ends and the log of the signal amplitude ratio were used to calculate the interaction position resolution. The position resolution of the DOI detector was calibrated using a collimated Cs-137 source, and the full width at half maximum of the reconstruction position of the Gaussian fitting curve was approximately 4.4 cm. The DOI detector can be arbitrarily divided into several units to independently reconstruct the source distribution images. The unit length was optimized via Am-Be source-location experiments. A multidetector filtering method is proposed for image denoising. This method can effectively reduce image noise caused by poor DOI detector position resolution. The vertical field of view of the imager was (-55°, 55°) when the detector was placed in the center of the coded mask. A DT neutron source at 20 m standoff could be located within 2400 s with an angular resolution of 3.5°.

  • Reconfiguring colours of single relief structures by directional stretching

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Colour changes can be achieved by straining photonic crystals or gratings embedded in stretchable materials. However, the multiple repeat units and the need for a volumetric assembly of nanostructures limit the density of information content. Inspired by surface reliefs on oracle bones and music records as means of information archival, here we endow surface-relief elastomers with multiple sets of information that are accessible by mechanical straining along in-plane axes. Distinct from Bragg diffraction effects from periodic structures, we report trenches that generate colour due to variations in trench depth, enabling individual trench segments to support a single colour. Using 3D printed cuboids, we replicated trenches of varying geometric parameters in elastomers. These parameters determine the initial colour (or lack thereof), the response to capillary forces, and the appearance when strained along or across the trenches. Strain induces modulation in trench depth or the opening and closure of a trench, resulting in surface reliefs with up to six distinct states, and an initially featureless surface that reveals two distinct images when stretched along different axes. The highly reversible structural colours are promising in optical data archival, anti-counterfeiting, and strain-sensing applications.

  • Planar chiral metasurfaces with maximal tunable chiroptical response driven by bound states in the continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical metasurfaces with high-Q chiral resonances can boost light-matter interaction for various applications of chiral response for ultrathin, active, and nonlinear metadevices. Usually, such metasurfaces require sophisticated depth-resolved nanofabrication to realize subwavelength stereo-nanostructures, posing overwhelming challenges, especially in the short-wavelength range. Here, we suggest a novel planar design for chiral metasurfaces supporting bound states in the continuum (BICs) and demonstrate experimentally chiroptical responses with record-high Q-factors (Q=390) and near-perfect circular dichroism (CD=0.93) at optical frequencies. The symmetry-reduced meta-atoms are highly birefringent and support winding elliptical eigen-polarizations with opposite helicity surrounding the BIC polarization singularity, providing a convenient way for achieving maximal planar chirality tuned by either breaking in-plane symmetry or changing illumination direction. Such sharply resonant chirality realized in planar metasurfaces promises various practical applications in classical and quantum optics including chiral sensing, enantiomer selection, and chiral quantum emitters.

  • Tailoring topological transition of anisotropic polaritons by interface engineering in biaxial crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Polaritons in polar biaxial crystals with extreme anisotropy offer a promising route to manipulate nanoscale light-matter interactions. The dynamical modulation of their dispersion is great significance for future integrated nano-optics but remains challenging. Here, we report a momentum-directed strategy, a coupling between the modes with extra momentum supported by the interface and in-plane hyperbolic polaritons, to tailor topological transitions of anisotropic polaritons in biaxial crystals. We experimentally demonstrate such tailored polaritons at the interface of heterostructures between graphene and {\alpha}-phase molybdenum trioxide ({\alpha}-MoO3). The interlayer coupling can be electrically modulated by changing the Fermi level in graphene, enabling a dynamic topological transition. More interestingly, we found that the topological transition occurs at a constant Fermi level when tuning the thickness of {\alpha}-MoO3. The momentum-directed strategy implemented by interface engineering offers new insights for optical topological transitions, which may shed new light for programmable polaritonics, energy transfer and neuromorphic photonics.

  • Colorful Optical Vortices with White Light Illumination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The orbital angular momentum (OAM) of light holds great promise for applications in optical communication, super-resolution imaging, and high-dimensional quantum computing. However, the spatio-temporal coherence of the light source has been essential for generating OAM beams, as incoherent ambient light would result in polychromatic and obscured OAM beams in the visible spectrum. Here, we extend the applications of OAM to ambient lighting conditions. By miniaturizing spiral phase plates and integrating them with structural color filters, we achieve spatio-temporal coherence using only an incoherent white light source. These optical elements act as building blocks that encode both color and OAM information in the form of colorful optical vortices. Thus, pairs of transparent substrates that contain matching positions of these vortices constitute a reciprocal optical lock and key system. Due to the multiple helical eigenstates of OAM, the pairwise coupling can be further extended to form a one-to-many matching and validation scheme. Generating and decoding colorful optical vortices with broadband white light could find potential applications in anti-counterfeiting, optical metrology, high-capacity optical encryption, and on-chip 3D photonic devices.