注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:202211.00392
    下载全文

    Deep Learning with Heterogeneous Graph Embeddings for Mortality Prediction from Electronic Health Records

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-27 合作期刊: 《数据智能(英文)》

    Tingyi, Wanyan Hossein, Honarvar Ariful, Azad Ying, Ding Benjamin, S. Glicksberg

    摘要: Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modelling strategies is required to identify architectures that can best model outcomes. In this work, we trained a Heterogeneous Graph Model (HGM) on electronic health record (EHR) data and used the resulting embedding vector as additional information added to a Convolutional Neural Network (CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captured the relationships between medical concepts, lab tests, and diagnoses, which enhanced predictive performance. We found that adding HGM to a CNN model increased the mortality prediction accuracy up to 4%. This framework served as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.

     点击量 1496  下载量 474  评论 0
友情链接 : PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心