• Euclid: Forecasts from the void-lensing cross-correlation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing and their cross-correlation. To this aim, we implement a Fisher matrix approach tailored for voids from the Euclid photometric dataset and present the first forecasts on cosmological parameters that include the void-lensing correlation. We examine two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carry out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, $M_\nu$, and a dynamical dark energy (DE) equation of state, $w(z)$, described by the CPL parametrisation. We find that void clustering constraints on $h$ and $\Omega_b$ are competitive with galaxy lensing alone, while errors on $n_s$ decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by $10-15\%$, and enhances the joint void clustering and galaxy lensing Figure of Merit (FoM) by $10\%$ and $25\%$, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void-clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on $h$, $\Omega_b$, the neutrino mass, and the DE evolution.

  • Euclid preparation. XXVII. Covariance model validation for the 2-point correlation function of galaxy clusters

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Aims. We validate a semi-analytical model for the covariance of real-space 2-point correlation function of galaxy clusters. Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrate a simple model to accurately describe the clustering covariance. Then, we use such a model to quantify the likelihood analysis response to variations of the covariance, and investigate the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters. Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the 2-point correlation function of galaxy clusters. By introducing few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with 10 per cent accuracy, with differences of about 5 per cent on the figure of merit of the cosmological parameters $\Omega_{\rm m}$ and $\sigma_8$. Also, we find that the cosmology-dependence of the covariance adds valuable information that is not contained in the mean value, significantly improving the constraining power of cluster clustering. Finally, we find that the cosmological figure of merit can be further improved by taking mass binning into account. Our results have significant implications for the derivation of cosmological constraints from the 2-point clustering statistics of the Euclid survey of galaxy clusters.