• BMP2-SMAD Signaling Represses the Proliferation of Embryonic Neural Stem Cells through YAP

    Subjects: Biology >> Biophysics >> Neurosciences submitted time 2016-06-06

    Abstract: Previous studies have shown that the Hippo pathway effector yes-associated protein (YAP) plays an important role in maintaining stem cell proliferation. However, the precise molecular mechanism of YAP in regulating murine embryonic neural stem cells (NSCs) remains largely unknown. Here, we show that bone morphogenetic protein-2 (BMP2) treatment inhibited the proliferation of mouse embryonic NSCs, that YAP was critical for mouse NSC proliferation, and that BMP2 treatment-induced inhibition of mouse NSC proliferation was abrogated by YAP knockdown, indicating that the YAP protein mediates the inhibitory effect of BMP2 signaling. Additionally, we found that BMP2 treatment reduced YAP nuclear translocation, YAP-TEAD interaction, and YAP-mediated transactivation. BMP2 treatment inhibited YAP/TEAD-mediated Cyclin D1 (ccnd1) expression, and knockdown of ccnd1 abrogated the BMP2-mediated inhibition of mouse NSC proliferation. Mechanistically, we found that Smad1/4, effectors of BMP2 signaling, competed with YAP for the interaction with TAED1 and inhibited YAP's cotranscriptional activity. Our data reveal mechanistic cross talk between BMP2 signaling and the Hippo-YAP pathway in murine NSC proliferation, which may be exploited as a therapeutic target in neurodegenerative diseases and aging.

  • Brahma regulates the Hippo pathway activity through forming complex with Yki-Sd and regulating the transcription of Crumbs

    Subjects: Biology >> Biophysics >> Cell Biology submitted time 2016-05-12

    Abstract: The Hippo signaling pathway restricts organ size by inactivating the Yorkie (Yki)/Yes-associated protein (YAP) family proteins. The oncogenic Yki/YAP transcriptional coactivator family promotes tissue growth by activating target gene transcription, but the regulation of Yki/YAP activation remains elusive. In mammalian cells, we identified Brg1, a major subunit of chromatin-remodeling SWI/SNF family proteins, which interacts with YAP. This finding led us to investigate the in vivo functional interaction of Yki and Brahma (Brm), the Drosophila homolog of Brg1. We found that Brm functions at the downstream of Hippo pathway and interacts with Yki and Scalloped (Sd) to promotes Yki-dependent transcription and tissue growth. Furthermore, we demonstrated that Brm is required for the Crumbs (Crb) dysregulation-induced Yki activation. Interestingly, we also found that crb is a downstream target of Yki-Brm complex. Brm physically binds to the promoter of crb and regulates its transcription through Yki. Together, we showed that Brm functions as a critical regulator of Hippo signaling during tissue growth and plays an important role in the feedback loop between Crb and Yki. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.