按提交时间
按主题分类
按作者
按机构
  • Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-10-26 合作期刊: 《干旱区科学》

    摘要: Soil moisture is critical for vegetation growth in deserts. However, detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported. In this study, we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016, to explore the spatio-temporal variation of soil moisture content, investigate the impact of Haloxylon ammodendron (C. A. Mey.) Bungeon soil moisture content in its root zone, and examine the factors influencing the soil moisture spatial pattern. One-way analysis of variance, least significant difference tests and correlation analysis were used to analyze the data. The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods, namely, a moisture-gaining period, a moisture-losing period and a moisture-stable period. According to the temporal and spatial variability, the 0–400 cm soil profile could be divided into two layers: an active layer with moderate variability and a stable layer with weak variability. The temporal variability was larger than the spatial variability in the active layer, and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top. The mean profile soil moisture content in the root zone of dead H. ammodendron individuals was significantly higher than that in the root zones of adult and young individuals, while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference. The spatial pattern of soil moisture was attributable to the combined effects of snowfall, vegetation and soil texture, whereas the effects of rainfall and evaporation were not significant. The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.

  • How do intensive restoration efforts and climate changes alter the strength of causal-feedback loops in Lake Taihu: A tug-of-war

    分类: 生物学 >> 生态学 提交时间: 2023-06-01

    摘要: Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton and environmental factors from 2000 to 2017 could be classified by two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton)-driven enhancement loops promoting the response of the phytoplankton, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalance groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.