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Cumulants in the 3-dimensional Ising, O(2) and O(4) spin models
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Based on the universal properties of a critical point in different systems and that the QCD
phase transitions fall into the same universality classes as the 3-dimensional Ising, O(2) or O(4)
spin models, the critical behavior of cumulants and higher cumulant ratios of the order parameter
from the three kinds of spin models is studied. We found that all higher cumulant ratios change
dramatically the sign near the critical temperature. The qualitative critical behavior of the same
order cumulant ratio is consistent in these three models.
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I. INTRODUCTION

One goal of current relativistic heavy ion col-
lision experiments is to locate the QCD critical
point. In the idealized thermodynamic limit, the
correlation length ξ would diverge at the critical
point [1]. But the system size, especially the
evolution time of the formed system are finite in
relativistic heavy-ion collisions [1, 2]. ξ may not
be fully developed. It’s estimated to be at most
the value of 2-3 fm [2]. It’s close to its ”natural”
value of 1fm. So it’s essential to find observable
that is sensitive to the critical point.

Recently, it has proposed that the higher cu-
mulants will be more sensitive to the critical
point [3]. On one hand, they are more sensitive
to the correlation length. For example, the third
cumulant and fourth cumulant of net-proton in
heavy-ion collisions individually diverge with ξ4.5

and ξ7, which is much faster than the quadratic
cumulant. On the other hand, the higher cu-
mulant can reflect the fine-detail information of
the net-proton distribution. The sign changes of
various cumulants are noted in related papers.
For example, the sign of the third order cumu-
lant is discussed in Ref. [4], the negative fourth
order cumulant is discussed in Ref. [5, 6], and
the sign change of sixth and eighth order cumu-
lants is shown in Ref. [7]. In order to compare
the results of theory with experiments, the ra-
tios of higher cumulants to the second order one
is usually used.

As we know, different systems have univer-

sal behavior in the vicinity of a critical point.
The systems falling to the same universality class
have the same value for the critical exponent. So
the results of relatively simple systems, such as
spin models with an O(N)-symmetry, play an
important role in the analysis of phase transi-
tions in much more complicated systems.

The critical point terminating the first order
phase transition line in the QCD phase bound-
ary belongs to the same universality class of the
3-dimensional Ising model [8–11]. In the chiral
limit, if UA(1) symmetry is broken, the chiral
phase transition of a 2-flavor QCD theory is ar-
gued to belong to the same universality class of
the 3-dimensional O(4) spin model [8]. The crit-
ical behavior of the net-baryon number fluctua-
tions is expected to be controlled by the univer-
sal O(4) symmetry group [12]. Because of lat-
tice artifacts in calculations with the staggered
fermions, the 2- and (2+1)-flavor chiral phase
transitions may belong to the same universality
class with the O(2) spin model [13–15]. So the
critical behavior of cumulant and higher cumu-
lant ratios in the 3-dimensional Ising, O(2) and
O(4) spin models are helpful.

In this paper, we first introduce the cumu-
lants in the O(N) spin models and the corre-
sponding relations of the 3-dimensional Ising and
O(4) spin models to the QCD. Then through
the Monte Carlo simulations without external
magnetic field, we calculate the cumulants and
higher cumulant ratios of the order parame-
ter in the 3-dimensional Ising, O(2) and O(4)
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spin models. The critical behavior of the or-
der parameter, the susceptibility, the ratios of
the third, fourth and sixth to second order cu-
mulant is presented and discussed, respectively.
Meanwhile, the behavior of higher cumulant ra-
tios in the 3-dimensional Ising, O(2) and O(4)
spin models is compared. Finally, the conclu-
sions are drawn.

II. FLUCTUATIONS OF ORDER PARAMETER

IN THE O(N) SPIN MODELS

The O(N)-invariant nonlinear σ-models(O(N)
spin model) are defined as,

βH = −J
∑

〈i,j〉

~Si · ~Sj − ~H ·
∑

i

~Si. (1)

H is the Hamiltonian. J and ~H are both reduced
quantities which already conclude β = 1/T . J
is an interaction energy between the nearest-
neighbor spins 〈i, j〉. In our simulation, we set

J = β. ~H is the external magnetic field. ~Si is
a unit vector of N -components at ith site of a
d-dimensional hyper-cubic lattice with a longi-
tudinal (parallel to the magnetic field ~H) and a
transverse component

~Si = S
‖
i ~eH + ~S⊥

i , (2)

where

~eH = ~H/H. (3)

H is the magnitude of the external field. The
cases N = 1, 2, 4 and d = 3 are the 3-dimensional
Ising, O(2) and O(4) spin models, respectively.
The energy of a spin configuration is defined
as [17]

E = −
∑

<i,j>

~Si · ~Sj . (4)

The average of the longitudinal spin components
is

S‖ =
1

V

∑

i

S
‖
i , (5)

where V = L3 and L is the number of spins in
each direction.

Then the partition function is

Z(T,H) =

∫

∏

i

dNSiδ(~S
2
i −1) exp(−βE+HV S‖).

(6)
The (reduced) free energy per unit volume is

f(T,H) = −
1

V
lnZ. (7)

The derivatives of the free energy density to H
are as following,

χn = −
∂nf

∂Hn

∣

∣

∣

∣

T

. (8)

They are related with the cumulants of order
parameter. For instance,

χ1 = 〈S‖〉,

χ2 = V 〈δS‖2〉,

χ3 = V 2〈δS‖3〉,

χ4 = V 3(〈δS‖4〉 − 3〈δS‖2〉2),

χ6 = V 5(〈δS‖6〉 − 10〈δS‖3〉2 + 30〈δS‖2〉3 − 15〈δS‖4〈δS‖2〉)

(9)

Where

δS‖ = S‖ − 〈S‖〉, (10)

χ1 and χ2 are respectively the magnetiza-
tion(order parameter) M and longitudinal sus-
ceptibility χL. Owing to the spatial rotation
symmetry of the O(N) groups, the mean value
of the order parameter is always zero without ex-
ternal magnetic field. In this case, the order pa-
rameter definition should be resorted [18], such
as

M = 〈|
1

V

∑

i

~Si|〉. (11)

The scaling form of the critical part of the free
energy in the second order phase transition can
be write as

fs(t, h) = l−3fs(l
ytt, lyhh), (12)

where t is the normalized reduced temperature
and h is the normalized reduced magnetic field

t = (T − Tc)/T0, h = H/H0. (13)
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T0 and H0 are the normalized parameters. yt
and yh are the thermal and magnetic exponents,
respectively. For purpose of mapping the results
of the 3-dimensional Ising model to that of QCD,
the linear ansatz as following is suggested [19–21]

t = T−Tcp+a(µ−µcp), h = b(T−Tcp)+µ−µcp.
(14)

Tcp is the temperature and µcp is the chemical
potential at the QCD critical point. a and b
have to be determined from QCD. We can get
that

∂/∂µ =
−b

1− ab

∂

∂t
+

1

1− ab

∂

∂h
,

∂/∂T =
1

1− ab

∂

∂t
−

a

1− ab

∂

∂h
.

(15)

Through the different orders of derivatives of free
energy density to µ, we can get the fluctuations
of particle number, which can be measured by
experiments. The exponent yh is bigger than yt
in the 3-dimensional Ising model. Their ratio
yh/yt = γ + β = 25/16 [22]. So ∂/∂h will be
more singular than ∂/∂t. Although, we don’t
know the values of a and b, the particle number
fluctuations are dominated by the derivatives of
the free energy density to h, that’s the order pa-
rameter fluctuations in the 3-dimensional Ising
model.
The scaling form of the critical part of the free

energy density in the chiral phase transition may
be

fs(T, µq, h)

T 4
= Ah(1+1/δ)ff (z), z = t/h1/βδ,

(16)
where β and δ are critical exponents from the 3-
dimensional O(4) spin model, ff(z) is the scaling
function of the free energy density and

t ≡
1

t0
(
T − Tc
Tc

+ κµ(
µq

T
)2), h ≡

1

h0

mq

Tc
. (17)

Here Tc is the chiral phase transition tempera-
ture. From Eq. (17), we note that the deriva-
tives of free energy density to h in the O(4) spin
model are equal to the derivatives of free energy
density to mq, which is the fluctuation of order
parameter, or the chiral condensate

〈ψ̄ψ〉 = −
NF

4

∂f

∂mq

. (18)

So the critical fluctuations of order parameter
from the 3-dimensional O(4) spin model can re-
flect the chiral condensate fluctuations in the
QCD chiral phase transition. When it comes
to the chiral limit, the quark masses vanish and
the chiral symmetry is restored. It corresponds
to that the magnetic field in the 3-dimensional
O(4) model is zero.

III. THE CRITICAL BEHAVIOR OF HIGHER

CUMULANT RATIOS IN THE 3D ISING, O(2)
AND O(4) SPIN MODELS

The Monte Carlo simulations of the 3-
dimensional Ising, O(2), and O(4) spin models
in a finite system are performed by the Wolff al-
gorithm with helical boundary conditions [25].
We choose sufficient big size for each case which
can present the qualitative features well, that’s
L = 24 for the Ising model and L = 20 for the
O(2) and O(4) spin models. In order to observe
and compare the trend of cumulants and their ra-
tios varying with T/Tc in different models, we di-
vide the cumulants or their ratios by their maxi-
mum values and rescale the values of χ2, χ3/χ2,
χ4/χ2, χ6/χ2 to plot them. Here Tc is the critical
temperature of each model. In our calculation,
we use approximate values 4.51 [18], 2.202 [26]
and 1.068 [26] for Tc in the 3-dimensional Ising,
O(2) and O(4) spin models, respectively.
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Fig. 1: (Color online) The temperature dependence of the

order parameter (M) and susceptibility (χ2) in the vicinity

of critical temperature from the 3-dimensional Ising (O(1)),

O(2) and O(4) spin models.

The order parameter (M) and susceptibility (χ2) from
the 3-dimensional Ising, O(2) and O(4) spin models is
presented in Fig. 1. Its behavior in these three spin mod-
els is similar. M decreases with the increasing temper-
ature. When the temperature is much lower than Tc,
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the system is ordered, all of the spins align to the same
direction, the value of M approaches one. When the
temperature is much higher than Tc, the system is disor-
dered, the spins point to a direction at random, the value
of M approaches zero. The qualitative behavior of χ2 in
the three models are similar, too. There is a pronounced
cusp near Tc. The peak is also observed in the chiral
susceptibility in the 2-flavor QCD lattice calculation and
the chiral effective model with the Polyakov loop [27, 28].

The ratios of the third (χ3/χ2) and fourth (χ4/χ2) to
the second order cumulant in the 3-dimensional Ising,
O(2) and O(4) spin models are shown in Fig. 2.
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Fig. 2: (Color online) The temperature dependence of

χ3/χ2 and χ4/χ2 in the vicinity of critical temperature from

the 3-dimensional Ising (O(1)), O(2) and O(4) spin models.

The qualitative behavior of χ3/χ2 is the same in the
three models. It changes dramatically the sign near Tc. It
is negative when T < Tc, and becomes positive when T >
Tc. The behavior of χ3/χ2 from the 3-dimensional Ising
model is consistent with that in Ref. [29]. The third order
cumulant reflects the skewness of the distribution. As the
Gaussian distribution, it’s symmetrical, then its skewness
is zero. If the left tail of a distribution is longer than the
right one, the third order cumulant will be negative. If
the right tail is longer, the third order cumulant will be
positive. The qualitative behavior of χ4/χ2 is the same in
the three models. It oscillates greatly with temperature
near Tc. They are negative when T approaches Tc from
T > Tc side. This is consistent with the prediction in [6],
which said the fourth order cumulant will be negative
when the system approaches the critical point from the
crossover side. The fourth order cumulant reflects the
kurtosis of the distribution. Gaussian distribution is also
the reference. Its kurtosis is zero. If a distribution is less
sharp than the Gaussian distribution, its fourth order
cumulant will be negative. If it’s more sharp, its fourth
order cumulant is positive.

The ratios of sixth to second order cumulant from the
3-dimensional Ising, O(2) and O(4) spin models are pre-
sented in Fig. 3.
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Fig. 3: (Color online)The temperature dependence of

χ6/χ2 in the vicinity of critical temperature from the 3-

dimensional Ising (O(1)), O(2) and O(4) spin models.

Its generic structure in the three models is similar. It
has two positive maximums and a pronounced negative
minimum between them close to the transition region.
Comparing χ3/χ2, χ4/χ2 and χ6/χ2, we found that the
higher the order of the cumulant, the more complicated of
the structure and quicker to get equilibrium after leaving
the critical point.
From the simulation results, we already know that the

behavior of the same order cumulant or higher order cu-
mulant ratio is similar in the three models. Now let’s
analyze it briefly from the theory. As the order param-
eter in the spin models, it will approach one and zero
in the ordered and disordered phases, respectively, which
leads to the similar behavior of the order parameter. In
the thermodynamical limit, the susceptibility diverges as
χ2 ∼ |t|−γ in the vicinity of the critical point. The value
of γ is 1.253(4) [22], 1.3192 [23] and 1.4668 [24] for the
3-dimensional Ising, O(2) and O(4) spin models. Their
values are positive and close to each other. In a finite
system, the divergence will be weakened and become a
round peak. That’s why the behavior of χ2 is similar. All
of the cumulants of the order parameter are derivatives
of the free energy density with respect to the external
field, the behavior of the first and second order cumu-
lants is similar in these three models, so it’s not difficult
to understand the similar behavior of the higher order
cumulant ratios.

IV. SUMMARY

In this paper, the critical behavior of the order pa-
rameter, susceptibility, ratios of the third, fourth, sixth
order cumulant to the second one are calculated from
the 3-dimensional Ising, O(2) and O(4) spin models at
a given system size without external field. For each or-
der cumulant or higher cumulant ratios, its qualitative
critical behavior in these three models is the same. The
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ratios of the third, fourth, and sixth order cumulant to
the second one change dramatically near the critical tem-
perature. They all have sign change. And the higher the
order of the cumulant, the more complicated of the struc-
ture. From the 3-dimensional Ising model, we know that
the sign changes of the cumulant ratios of baryon num-
ber fluctuations may predict the critical signals in heavy-
ion collisions. For the 3-dimensional O(2) and O(4) spin
models, in order to guide the experiments, the deriva-

tives of free energy density to the temperature in a finite
lattice is on going.
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