您当前的位置: > 详细浏览

分次预胞腔代数

Graded Precellular Algebra

摘要:胞腔代数是近年来备受关注的一种代数结构,而分次代数在表示论之中起着非常重要的作用。基于王涛对预胞腔代数的研究,给出分次预胞腔代数的定义,并且讨论了分次预胞腔代数的表示理论,最后还研究了正则半群代数的分次预胞腔性。

英文摘要:Cellular algebra is an algebraic structure received considerable attention in recent years, and graded algebra plays an important role in the theory of representation. Based on Wang Tao's research on precellular algebra, the definition of graded precellular algebra is given, and the representation theory of graded precellular algebra is discussed. Finally, the graded pre-cellularity of the regular semigroup algebra is studied.

版本历史

[V4] 2022-08-07 15:45:35 chinaXiv:202208.00005V4 下载全文
[V3] 2022-08-05 02:06:43 chinaXiv:202208.00005v3 查看此版本 下载全文
[V2] 2022-08-02 15:11:59 chinaXiv:202208.00005v2 查看此版本 下载全文
[V1] 2022-08-02 13:36:03 chinaXiv:202208.00005v1 查看此版本 下载全文
点击下载全文
同行评议状态
待评议
许可声明
metrics指标
  • 点击量255
  • 下载量156
评论
分享
邀请专家评阅