Comparison of Three Data Mining Algorithms in Knowledge Discovery of Electronic Medical Records
摘要: 【目的】从异构的电子病历数据中发现疾病危险因素, 为数据挖掘与知识发现提供借鉴。【方法】选取集各种结构为一身的临床电子病历数据, 利用决策树、逻辑回归和神经网络三种数据挖掘算法分别建立疾病危险因素预测模型, 对三种预测模型进行比较分析和统计学评价。【结果】决策树预测模型在查准率、召回率上高于逻辑回归和神经网络, 在总体性能上决策树最优, 但三者差别不大。【局限】未对电子病历属性进行优化选择。【结论】决策树在危险因素的发现与疾病的预测方面优于逻辑回归和神经网络。研究中建立基于数据挖掘算法的异构数据源知识发现框架, 为今后领域知识发现和知识库构建以及数据挖掘算法的选择提供一定借鉴和参考。
Abstract: 【Objective】Disease risk factors were discovered from heterogeneous electronic medical record data to provide reference for data mining and knowledge discovery. 【Method】Clinical electronic medical record data with various structures were selected, and three data mining algorithms, decision tree, logistic regression and neural network, were used to establish disease risk factor prediction models, and the three prediction models were compared and analyzed statistically. . [Results] The precision and recall of the decision tree prediction model are higher than those of logistic regression and neural network, and the overall performance of the decision tree is the best, but there is little difference between the three. [Limitations] The attributes of electronic medical records are not optimized. 【Conclusion】Decision tree is superior to logistic regression and neural network in the discovery of risk factors and prediction of disease. In the research, a knowledge discovery framework of heterogeneous data sources based on data mining algorithm is established, which provides certain reference and reference for the future domain knowledge discovery and knowledge base construction and the selection of data mining algorithms.
[V1] | 2017-10-11 13:20:06 | ChinaXiv:201711.01190V1 | 下载全文 |
1. 融媒体赋能高校图书馆阅读推广文化育人品牌活动的研究 | 2023-12-04 |
2. 论课程信息素养 | 2023-11-22 |
3. 美国高校信息素养教育TTT教学模式的研究 | 2023-11-22 |
4. 中国式现代化对于全球开放科学实践的启示与意义 | 2023-11-17 |
5. 高校青年学者科研竞争力多维评价体系研究 | 2023-11-12 |
6. 数据管理计划是保障公共数据开放利用与价值实现的关键措施 | 2023-11-07 |
7. 基于知识图谱的黄河流域非遗资源 智能问答研究 | 2023-11-07 |
8. 基于文本挖掘与复杂网络的我国绿色消费领域 研究主题挖掘 | 2023-11-07 |
9. 《点石斋画报》主题演化分析 | 2023-11-07 |
10. 浅谈“挖衬”技艺在名人手札修复中的应用——以南开大学图书馆藏《林颂河手札》修复为例 | 2023-11-07 |