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Abstract 

In this paper a three component model-based decomposi-

tion with adaptive selection of unitary transformations for 

polarimetric synthetic aperture radar (POLSAR) data pro-

cessing is proposed. Singh et al implemented two unitary 

transformations on the coherency matrix to minimize the 

power of cross-polarization, and as a result the 23T  ele-

ment of the coherency matrix becomes zero. Another two 

unitary transformations are proposed by us to carry out on 

the coherency matrix also to minimize the power of cross-

polarization, and the 13T  element of the coherency matrix 

becomes zero. Here, we first implement Singh’s two uni-

tary transformations and the proposed two unitary trans-

formations on the coherency matrix separately. Then we 

select the one which leads to the smaller 33T . At last, we 

carry out the three component model-based decomposition 

proposed by Freeman and Durden based on the obtained 

coherency matrix. The smaller 33T  is obtained, the better 

the over-estimation of volume scattering in model-based 

decomposition can be suppressed. The RADARSAT-2 

POLSAR data of San Francisco area is used to validate 

the improvement of the proposed method over the three 

component decomposition only with Singh’s two unitary 

transformations. 

1 Introduction 

In the research area of polarimetric synthetic aperture ra-

dar (POLSAR) target decomposition, model-based de-

composition is always a hot topic. The pioneering work in 

model-based decomposition is the three component de-

composition proposed by Freeman and Durden [1]. They 

decompose the covariance matrix of POLSAR data into 

three components, i.e. the surface scattering component, 

the double-bounce scattering component, and the volume 

scattering component. The surface scattering occurs on 

some Bragg surface, and the double-bounce scattering 

happens when the electromagnetic wave is scattered by 

ground-wall dihedral or ground-trunk dihedral, and the 

volume scattering happens when the target is the canopy, 

respectively. However, when the target is azimuth modu-

lated [2] or when the dihedral does not aligned in the di-

rection of the flight track [3,4], the cross-polarization will 

occur. As the azimuth modulated surface and the oriented 

dihedral will introduce additional cross-polarization, the 

volume scattering estimated from cross-polarization is 

often over estimated. Yamaguchi et al proposed a decom-

position approach, i.e. the four component decomposition, 

by adding a helix term to alleviate the over-estimation of 

volume scattering [5]. Orientation angle compensation 

(OAC) was also implemented on POLSAR data and after 

which the cross-polarization power was decreased [2,3,4]. 

Except for OAC, Singh et al further implemented another 

unitary transformation on the coherency matrix also to 

minimize the power of the cross-polarization ( 33T element) 

[6]. After this, there are seven degrees of freedom out of 

nine left in the coherency matrix, and the four component 

decomposition was carried out by Singh et al. So five of 

seven degrees of freedom were accounted. The two unac-

counted degrees of freedom are the real and imaginary 

parts of 13T element, respectively. As mentioned in [6], 

these two degrees of freedom still remain unaccounted in 

any known model-based decompositions. 

In fact, except for orientation angle, the helix angle also 

contributes to the power of cross-polarization. We can 

verify this point by the helix term of the four component 

decomposition. The helix term of the four component de-

composition is 

0 0 0

0 1

0 1

helixT j

j

 
 

 
 
  

                       (1) 

Yamaguchi et al included this term in their decomposition, 

but this term was not displayed in the decomposition re-

sulted color-coded image. In this paper, we propose a he-

lix compensation operation for the coherency matrix, in-
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spired by applying OAC to the coherency matrix, which is 

accomplished by a unitary transformation to minimize the 

33T  element. Then another unitary transformation is also 

carried out to minimize the 33T  element for the coherency 

matrix following the first unitary transformation (helix 

compensation). After these two unitary transformations 

the 13T  element becomes zero. We implement Singh’s 

two unitary transformations and the two proposed unitary 

transformation on the coherency matrix separately. Then 

the smaller 33T  element of the obtained two coherency 

matrices are preferred, and the corresponding two unitary 

transformations are selected. At last the FDD is carried 

out on the obtained coherency matrix after the alternative 

unitary transformations. The proposed method has an im-

provement in alleviating the over-estimation of volume 

scattering than applying the FDD only with the Singh’s 

two unitary transformations. 

2 FDD 

The coherency matrix of a target can be expressed as 

11 12 13

12 22 23

13 23 33

T T T

T T T T

T T T



 

 
 

  
 
  

                      (2) 

where   denotes complex conjugation. 

The coherency matrix can also be expressed using 

Huynen’s nine parameter [7] as  

0

0

A C jD H jG

T C jD B B E jF

H jG E jF B B

  
 

    
    

             (3) 

The coherency matrix of a target under reflection sym-

metry assumption can be decomposed into three compo-

nents as [1,3] 

S S D D V VT P T P T P T                        (4) 

The model of the three components can be expressed as 

2

2

1 0

1
0

1 0 0 0

ST



 


 
 
 
 
 
 

                    (5) 

2

2

0

1
1 0

1 0 0 0

DT

 






 
 
 
 
 
 

                    (6) 

2 0 0
1

0 1 0
4

0 0 1

VT

 
 


 
  

                           (7) 

SP  , DP , and VP  are the powers of surface scattering, 

double-bounce scattering, and volume scattering, respec-

tively. These three coefficients should not be negative 

because they are the corresponding powers. However as 

discussed above, over-estimation of volume scattering 

often happens which leads to the negative SP  and DP . 

3 Singh’s two unitary transformations 

The first unitary transformation is the rotation about the 

radar line of sight which is also known as OAC in [2,3,4] 
†( ) ( ) ( )T R TR                           (8) 

where †  denotes complex conjugation transposition, 

( )T   is the coherency matrix after OAC, and the rotation 

matrix is 

1 0 0

( ) 0 cos(2 ) sin(2 )

0 sin(2 ) cos(2 )

R   

 

 
 


 
  

. 

Via minimizing the 33( )T   element (the third row and 

third column element of ( )T  ) the angle   can be de-

rived 

33min( ( ))T                                (9) 

1 23

22 33

2Re( )1
tan

4

T

T T
   
  

 
                   (10) 

After the rotation of (8), E  of ( )T   becomes zero, and 

F  of ( )T   remains unchanged. 

The second unitary transformation carried out following 

the first unitary transformation is  
†( ) ( ) ( ) ( )T U T U                       (11) 

where ( )T   is the matrix obtained after this unitary trans-

formation, and 

1 0 0

( ) 0 cos(2 ) sin(2 )

0 sin(2 ) cos(2 )

U j

j

  

 

 
 


 
  

. 

Similar to OAC above, the angle   can be derived via 

minimizing the 33( )T   element 

33min( ( ))T                              (12) 

23

22 33

2Im( ( ))1

4 ( ) ( )

T

T T




 

 
  

 
                     (13) 

After the unitary transformation of (11), F  of ( )T   be-

comes zero, and E  of ( )T   remains unchanged. Because 

E  of ( )T   equals to zero, the E  and F  of ( )T   are all 

zeros. So the degrees of freedom of coherency matrix re-

duce from nine to seven after these two unitary transfor-

mations. Although the physical meaning of the second 

unitary transformation is somewhat obscure, it indeed 

makes the 33T  element smaller which is helpful for allevi-

ating the over-estimation of volume scattering. 

4 The Proposed Model-based Decomposition 

4.1 The Proposed Two Unitary Transformations 

As mentioned above, not only the orientation angle but 

also the helix angle of a target contribute to the cross-

polarization. Similar to OAC, helix angle compensation 

for the target is proposed as 
†( ) ( ) ( )T U TU                          (14) 
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where   is the helix angle, and the unitary transfor-

mation matrix is 

cos(2 ) 0 sin(2 )

( ) 0 1 0

sin(2 ) 0 cos(2 )

j

U

j

 



 

 
 


 
  

. 

The   can be derived by minimizing the 33( )T   element 

33min( ( ))T                             (15) 

1 13

11 33

2Im( )1
tan

4

T

T T
   
  

 
                   (16) 

After unitary transformation of (14), G  of ( )T   becomes 

zero, and H  of ( )T  remains unchanged. 

The second unitary transformation is proposed as 
†( ) ( ) ( ) ( )T U T U                         (17) 

where   is the unitary transformation angle, and 

cos(2 ) 0 sin(2 )

( ) 0 1 0

sin(2 ) 0 cos(2 )

U

 



 

 
 


 
  

. 

The angle   is derived by minimizing the 33( )T   ele-

ment 

33min( ( ))T                              (18) 

1 13

11 33

2Re(T ( ))1
tan

4 T T


   
  

 
                   (19) 

After unitary transformation of (17), H  of ( )T   be-

comes zero, and G  of ( )T  remains unchanged, i.e. H  

and G  of ( )T   are all zeros, and it is to say that the real 

and imaginary parts of 13( )T   are zeros. As far as we 

know, it is the first time that the helix unitary transfor-

mation is directly implemented on coherency matrix, as 

well as that two unitary transformations are utilized to 

make G  and H  (real and imaginary parts of 13T  element) 

zeros. The difference between Singh’s unitary transfor-

mations and our unitary transformations is that Singh’s 

first unitary transformation is OAC, but our first unitary 

transformation is helix compensation. In addition, 23 0T   

is one of the results of Singh’s transformations, however 

13 0T   is the counterpart of our transformations. 

4.2 The Proposed Decomposition 

In the following we first conduct Singh’s two unitary 

transformations ((8) and (11)) and the proposed two uni-

tary transformations ((14) and (17)) on the same coheren-

cy matrix separately, and then adaptively select the two 

unitary transformations which lead to the smaller 33T  el-

ement, and then carry out the FDD on the coherency ma-

trix obtained after the unitary transformations. The goal of 

adaptive selection of unitary transformations is to best fit 

the ground truth, because for some targets the orientation 

angle may be the main factor of the cross-polarization 

generation, however for some other targets the helix angle 

may be the main factor of the cross-polarization genera-

tion. The flowchart of the proposed decomposition is pre-

sented in figure 1. 

 

Start

Singh’s 

transformations

Our 

transformations

FDDFDD

End

T

33( )T  33( )T 

33 33( ) ( )?T T Yes No

( )T  ( )T 

 
Figure 1. Flowchart of the proposed decomposition. 

 

5 Experimental Results and Analysis 

The RADARSAT-2 C-band data in San Francisco area [8], 

which was acquired on April 9, 2008 on a fine-beam, 

quad-polarization mode, is used to validate the improve-

ment of the proposed method. The data has been 6-look 

processed in range and azimuth directions, and has a di-

mension of 4702402 pixels. The   calculated by (16) is 

presented in figure 2. It should be pointed out that the sce-

ne of Figure 2 is only part of the San Francisco area data, 

and the corresponding Google Earth optical image is pre-

sented in figure 5. It can be seen in figure 2 that the value 

of   is around zero in ocean areas. For comparison, the 

1  (the helix angle of the dominant eigenvector) in [9] is 

shown in figure 3. We can see that   and 1  are con-

sistent in general, so the physical meaningful   from (16) 

contains useful information. Then the proposed method is 

carried out. The resulted color-coded image of the pro-

posed decomposition is shown in figure 4. In the image, 

the blue color areas mean that the surface scattering is 

dominant. Similarly, red color means the double-bounce 

scattering is dominant, and the green color means the vol-

ume scattering is dominant. The experimental results 

show that 67.60 percent of the pixels of the data select 

Singh’s two unitary transformations, and the left pixels 

select our two unitary transformations. The average ratio 

of the volume scattering power to the total scattering pow-

er only with Singh’s two unitary transformations is 

27.16%, which is improved to 26.48% by using the pro-

posed decomposition.  So the average power of the vol- 
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Figure 2. Helix   calculated by (16) for RADARSAT-2 

data 

 
Figure 3. Helix 1  in [9] for RADARSAT-2 data 

 

ume scattering of the proposed decomposition is lower. It 

is to say the proposed model-based decomposition method 

with adaptive selection of unitary transformations is more 

effective in alleviating the over-estimation of volume scat-

tering than that only uses Singh’s two unitary transfor-

mations.  

To more specifically demonstrate the improvement of the 

proposed decomposition, we select four patches from the 

data for further validation. The Google Earth optical im-

age of the four patches is shown in figure 5. Patch 1 is the 

ocean area, patch 2 is the oriented built-up area, and patch 

3 and 4 are the park areas, respectively. The decomposi-

tion results are presented in table 1. For patch 1, the re-

sults of the FDD only with Singh’s unitary transfor- 

 
Figure 4.  Color-coded image obtained by the proposed 

decomposition on RADARSAT-2 data. 

 

 
Figure 5.  Google Earth optical images of the selected 

area. 

 

Table 1. Average volume scattering power contributions 

of (a) the proposed decomposition (b) the FDD only with 

Singh’s transformations  

 Patch 1  Patch 2 Patch 3 Patch 4 

a 3.08% 18.54% 49.13% 49.06% 

b 3.17% 19.11% 50.93% 50.89% 

 

mations and the proposed decomposition are similar with 

each other, because the orientation angle and the helix 

angle of the ocean surface are both small, which introduc-

es little cross-polarization as a result. For patch 2, , there 

is a small improvement by the proposed method with 

18.54% volume scattering compared to 19.11% volume 

scattering by only with Singh’s two trans1formations. The 

volume scattering power contribution by the proposed 

decomposition is 49.13% compared to 50.93% for patch 3, 

and the volume scattering power contribution by the pro-

posed decomposition is 49.06% compared to 50.89% for 

patch 4, respectively. For patch 3 and 4, the proposed two 

unitary transformations are more suitable for compensat-

ing the coherency matrix, because the orientation angle is 

very small for that there are no oriented buildings and 

azimuth modulated surfaces in these areas, and the helix 

angle of all the scatters in a resolution mainly contributes 

to the cross-polarization of the coherency matrix. The 

proposed decomposition is more reasonable, because it 

takes into account of different types of targets that for 

some targets the orientation angle is the main factor of 

cross-polarization generation, but for some other targets 

the helix angle may be the main factor of cross-

polarization generation. 

6 Conclusion  

A three component model-based decomposition with 

adaptive selection of unitary transformations is proposed 

in this paper. Two new unitary transformations on the 

coherency matrix are also proposed which include helix 
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compensation. The 13T  element becomes zero after apply-

ing these two unitary transformations. Experimental re-

sults demonstrate the improvement of the proposed de-

composition method. 
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