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Abstract

We examine various direct and indirect experimental constraints on the nearly minimal super-

symmetric standard model (nMSSM) and obtain the following observations: (i) Current experi-

ments stringently constrain the parameter space, setting a range of 1 ∼ 37 GeV for the lightest

neutralino χ̃0
1, 30 ∼ 140 GeV (1 ∼ 250 GeV) for the lightest CP-even (CP-odd) Higgs boson, and

1.5 ∼ 10 for tanβ; (ii) To account for the dark matter relic density, besides the s-channel exchange

of a Z-boson, the s-channel exchange of a light A1 (the lightest CP-odd Higgs boson) can also play

an important role in LSP annihilation. Compared with the Z-exchange annihilation channel, the

A1 exchange channel is more favored by muon g − 2 data and allows much broader regions for

the parameters; (iii) In a large part of the allowed parameter space the SM-like Higgs boson may

dominantly decay to χ̃0
1χ̃

0
1 or A1A1 and the conventional visible decays (e.g. into bottom quarks)

are severely suppressed.

PACS numbers: 14.80.Cp,12.60.Fr,11.30.Qc
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Because the minimal supersymmetric standard model (MSSM) suffers from the µ-

problem, some non-minimal supersymmetric models have recently been intensively stud-

ied, among which an attractive one is the nearly minimal supersymmetric standard model

(nMSSM) [1, 2]. This model extends the MSSM by one singlet superfield Ŝ with the super-

potential [3]

W = WMSSM + λεijĤ
i
uĤ

j
dŜ + ξFM

2
nŜ, (1)

where WMSSM is the superpotential of the MSSM without the µ-term, the second term

on the right side is the interaction of the singlet Ŝ with the Higgs doublets Ĥu and Ĥd,

and the last term is the tadpole term. This superpotential differs from that of the next-

to-minimal supersymmetric standard model (NMSSM) [4] in that the tadpole term of the

nMSSM replaces the trilinear singlet term κŜ3 of the NMSSM. Due to this tadpole term, W

has no discrete symmetry and so the nMSSM is free of the domain wall problem suffered by

the NMSSM. The tadpole term also gives rise to a vacuum expectation value (vev) for the

singlet, controlled by ξFM
2
n. Though it is SUSY-preserving, this tadpole term can naturally

be of the SUSY breaking scale – e.g., in the N = 1 supergravity model with a discrete

R-symmetry [20] such a tadpole term is generated at a high loop level and thus is naturally

small [3]. A nonzero singlet vev at the SUSY breaking scale generates an effective µ term

from the λεijĤ
i
uĤ

j
dŜ term with the desired order of magnitude, solving the µ problem of the

MSSM. These theoretical virtues motivate further phenomenological study of the nMSSM.

Because of the absence of the trilinear singlet term, the spectrum and phenomenology of the

nMSSM can be quite different from those of the NMSSM.

With the running of the LHC, all low energy supersymmetric models will soon be put

to the test. To explore these models at the LHC, it is very important to determine the

parameter space allowed by current experiments. In this work we comprehensively examine

experimental constraints on this model from the direct experimental searches for Higgs

bosons and sparticles, the precision electroweak measurements at LEP/SLD, the cosmic

dark matter relic density from WMAP, and the muon anomalous magnetic moment. We

also consider the theoretical constraints from the stability of the Higgs potential and the

perturbativity of the theory up to the grand unification scale. After analyzing the allowed

parameter space, we discuss some phenomenology of this model.

We start our analysis by recapitulating the basics of the nMSSM. With the superpotential
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in Eq. (1), the corresponding soft-breaking terms are given by [1, 5]

Vsoft = VMSSM + m̃2
d|Hd|2 + m̃2

u|Hu|2 + m̃2
S|S|2

+(λAλεijH
i
uH

j
dS + ξSM

3
nS + h.c.) (2)

where VMSSM contains the soft breaking terms for gauginos and sfermions in the MSSM,

and m̃u,d,S, Aλ and ξSM
3
n are soft breaking parameters. Noting that the tadpole terms do

not induce any interactions, one can conclude that, except for the tree-level Higgs boson

masses and the minimization conditions, the theory is the same as the well-known NMSSM

with the trilinear singlet term set to zero [5]. The nMSSM predicts three CP-even and two

CP-odd neutral Higgs bosons as well as five neutralinos [1, 5]. The mass of the lightest

neutralino (assumed to be the LSP) arises from the mixing of the singlino with higgsinos

and is given by [6]

mχ̃0
1
≃ 2µλ2(v2u + v2d)

2µ2 + λ2(v2u + v2d)

tan β

tan2 β + 1
(3)

where tan β = vu/vd, µ = λ〈s〉, and vu, vd and 〈s〉 are the vevs of the Higgs fields Hu, Hd

and S, respectively.

In our calculations we extend the packages NMSSMTools [7] and micrOMEGAs [8] to

the nMSSM. We use the modified NMSSMTools to calculate the Higgs boson masses and

their decays including all known radiative corrections. We use the modified micrOMEGAs

to calculate the dark matter relic density. The parameters relevant to our analysis are λ,

Aλ, tan β, mA ≡ 2(µAλ + λξFM
2
n)/ sin 2β, µ ≡ λ〈s〉, m̃S, the gaugino masses M1 and M2,

and the soft SUSY breaking parameters in the squark/slepton sectors. We assume all these

parameters to be real and specify their values at the weak scale.

Since we are only interested in the properties of the Higgs bosons and neutralinos and

these properties are affected little by the soft parameters in the squark/slepton sectors, we

specify these parameters before our scan. Noting that a heavy stop (t̃) is helpful for the Higgs

sector to evade the LEP constraints and a light smuon (µ̃) is needed in the nMSSM to explain

the muon anomalous magnetic moment aµ, we assume all the soft breaking parameters (soft

masses and trilinear A-parameters) to be 1 TeV for the (t̃, b̃) sector and 100 GeV for the

(ν̃µ, µ̃) sector. We will briefly discuss the results with a lower mt̃ and those with different

mµ̃ when the aµ constraint is switched on. For the other soft breaking parameters in the

squark/slepton sector, we uniformly set them to be 1 TeV since the considered constraints
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are not sensitive to them. Moreover, we assume the grand unification relation for the gaugino

masses, M1 = (5g′2/3g2)M2. With the above assumptions, we scan over the remaining seven

parameters in the following ranges: 0.1 ≤ λ ≤ 0.7, 1 ≤ tan β ≤ 10, −1 TeV ≤ Aλ ≤ 1 TeV,

50 GeV ≤ mA, µ,M2 ≤ 1 TeV and 0 < m̃S ≤ 200 GeV. Note that in the nMSSM tan β > 10

is not allowed by the dark matter relic density because mχ̃0
1
is suppressed by large tan β (see

Eq. (3)) and a light χ̃0
1 is difficult to annihilate sufficiently.

In our scan we consider the following constraints: (1) The dark matter relic density,

0.0945 < Ωh2 < 0.1287 [9]. We require χ̃0
1 to account for this density. (2) The aµ constraint,

aexpµ − aSMµ = (29.5± 8.8)× 10−10 [10]. We require the nMSSM contribution to explain the

deviation at the 2σ level. (3) The LEP bound on invisible Z decay, Γ(Z → χ̃0
1χ̃

0
1) < 1.76

MeV [11] (we also apply this bound to the decay Z → h1A1 with h1 being the lightest CP-

even Higgs boson); the LEP-II upper bound on σ(e+e− → χ̃0
i χ̃

0
j), which is 10−2 pb for i = 1,

j > 1 and 10−1 pb for i, j > 1 (summed over i and j) [12]; and the lower mass bounds on

sparticles from direct searches at LEP and the Tevatron [11]. (4) Constraints from the direct

search for Higgs bosons at LEP-II, which limit all possible channels for the production of

Higgs bosons. (5) Constraints from precision electroweak observables such as ρlept, sin
2 θlepteff ,

mW and Rb. (6) The perturbativity of the nMSSM up to the grand unification scale and

the stability of the Higgs potential which requires that the physical vacuum of the Higgs

potential is the true minimum of the potential.

The above constraints have been encoded in NMSSMTools [7], except for (5). In Ref. [13]

we extended the code by adding (5); here we extend all these constraints to the nMSSM

scenario. Since the hadronic contribution to aSMµ remains under discussion [10], in the

following we will present results both with and without considering the aµ constraint.

Our scan sample is 2.5 billion random points in the parameter space given above. With

all the constraints except aµ, only about 6 thousand points survive. This is mainly because

the dark matter relic density stringently constrains the mass and couplings of the LSP, and

consequently, only a small portion of the parameter space is allowed (as shown explicitly in

Figs.1-4 below). Among the surviving points, about 60% are characterized by mA1
≥ mZ

and 30 GeV ≤ mχ̃0
1
≤ 37 GeV, in which χ̃0

1 mainly annihilates through Z-boson exchange to

give the required dark matter relic density [1]. For most of the other points, both χ̃0
1 and A1

are predominantly singlet-like with roughly 2mχ̃0
1
∼ mA1

, in which the exchange of a light
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A1 is the main annihilation channel of χ̃0
1 (this annihilation channel, similar to the case of

Table III in [14] for the NMSSM, has not been studied for the nMSSM in the literature).

If we switch on the aµ constraint, the surviving points are reduced to 1.4 thousand, among

which about 60% (70%) satisfy mA1
< 60 GeV (mA1

< mZ). This indicates that the current

aµ measurement can constrain the model stringently, and that it favors LSP annihilation

through exchange of a light A1 rather than a Z-boson. Note that in the above we fixed

mµ̃ = 100 GeV. If we increase mµ̃, even fewer scan points will survive. For example, raising

mµ̃ to 150 GeV eliminates about half the remaining points with mA1
< mZ and nearly all the

points withmA1
≥ mZ . Formµ̃ = 200 GeV, none of our scan points survive the aµ constraint,

which implies that smuons must be lighter than about 200 GeV. This conclusion is unique to

the nMSSM. The underlying reason is that in SUSY models, the leading chargino/neutralino

contribution to δaµ is proportional to tan β/mN
µ̃ with N ≥ 2 [14, 15]. In the MSSM or

NMSSM, tan β can be quite large [13] and thus mµ̃ is not stringently constrained by aµ; but

in the nMSSM, tan β is bounded from above (<∼ 10) by the dark matter relic density and

hence mµ̃ must be light.
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λ
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mχ (GeV)∼ 0
1

FIG. 1: Parameter scan points allowed by current experiments. The dark bullets (light triangles)

correspond to mA1
≥ mZ (mA1

< mZ), with χ̃0
1 mainly annihilating through exchanging a Z-boson

(a light A1) to give the required dark matter relic density.

5

ch
in

aX
iv

:2
01

61
2.

00
47

6v
1



200

300

400

500

without  aµ

µ
(G

eV
)

without  aµ

100

200

300

400

0 100 200 300 400

with aµ

mχ (GeV)∼ 0
2

100 200 300 400 500

with aµ

mχ (GeV)∼ +
1

FIG. 2: Same as Fig. 1, but showing dependence on µ, mχ̃0
2
, and mχ̃+

1

.

In Figs. 1 and 2 we display the surviving points as functions of various parameters. As we

pointed out before, the strongest constraint come from the dark matter relic density. These

figures show that if only the Z exchange is responsible for the density (dark bullets), the

parameters λ, tan β, µ, mχ̃0
1,2

and mχ̃+

1
are all constrained in quite narrow ranges; however,

if the light A1 exchange is considered (light triangles), the allowed parameter ranges are

significantly more spread out.

Note that we checked by using the modified NMSSMTools that b–s transitions such as

b → sγ and B0
s–B̄

0
s mixing do not impose any meaningful constraints on the surviving

samples in the case of no squark flavor mixings. We also checked that for samples with

mA1

<∼ 10 GeV, the branching ratio for Υ → γA1 is less than its experimental upper bound

of 1× 10−4 [19].

The following additional comments are in order. (i) We call χ̃0
1 singlino-like when the

coefficient of the singlino component in χ̃0
1 is larger than 1/

√
2 (so its square is larger than

1/2). In general the higgsino or gaugino components in χ̃0
1 are not negligible even when

χ̃0
1 is singlino-like. In fact, it is the higgsino components in χ̃0

1 that are mainly responsible

for the LSP annihilation coupling discussed above. For annihilation via Z exchange, the

typical coefficient of the Hu-type higgsino component in χ̃0
1 is 0.4, and we checked that as
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the higgsino components increase, the coupling of χ̃0
1χ̃

0
1Z increases and consequently the

relic density drops [1]. For annihilation via A1 exchange, the typical coefficient for the

higgsino component in χ̃0
1 is 0.2 and for the doublet-Higgs component in A1 is 0.15. Since

the couplings of χ̃0
1χ̃

0
1A1 and A1f̄f (where f is a light fermion) are suppressed, annihilation

via A1 exchange is too weak to produce the required relic density except in the funnel

region 2mχ̃0
1
∼ mA1

[14]. (ii) The requirement m̃S < 200 GeV in our scan is taken from

Ref. [1] which studied electroweak baryogenesis. We checked that a larger range of m̃S does

not change our conclusions qualitatively; it only increases the number of surviving samples

with mA1
> mZ and raises the upper bound of mA1

. We did not impose the requirement

of successful electroweak baryogenesis in our scan since there exist other ways to explain

the origin of the matter-antimatter asymmetry in the Universe [1]. (iii) A heavy t̃ is not

necessary in the nMSSM for the SM-like Higgs boson to evade the LEP bound since the

Higgs boson mass can be enhanced at tree level by a contribution from λ [4]. We checked

that a lighter t̃ in our scan does not change our conclusions; it only decreases the number

of the surviving points.

As shown above, if we consider all the constraints including aµ with mµ̃ = 100 GeV, the

mass spectrum is limited to the following ranges: 1GeV <∼ mA1
<∼ 250GeV, 30GeV <∼ mh1

<∼
140GeV, 70GeV <∼ mh

<∼ 145GeV (h is the lightest doublet-dominant CP-even Higgs boson,

usually called the SM-like Higgs boson; in some cases h can be h1), 1GeV <∼ mχ̃0
1

<∼ 37GeV,

50GeV <∼ mχ̃0
2

<∼ 300GeV and 105GeV <∼ mχ̃+

1

<∼ 400GeV. In such allowed mass ranges, the

phenomenology of the Higgs bosons and sparticles may be quite peculiar and different from

the MSSM. A comprehensive study of the phenomenology of this model at the Tevatron and

the LHC is beyond the scope of this paper; instead we present the following brief discussion.

First, consider the Higgs bosons. The dominant decay of A1 may be either χ̃0
1χ̃

0
1 or bb̄ for

mA1
> 2mb, and we checked that the A1χ̃

0
1χ̃

0
1 interaction is mainly induced by the higgsino

components of χ̃0
1 and/or the doublet components of A1 [7]. The dominant decay mode of

the SM-like Higgs boson h can be any of the following: h → χ̃0
1χ̃

0
1, χ̃

0
1χ̃

0
2, A1A1, h1h1. In Fig. 3

we show the branching ratios of h and A1 decays into the LSP and bb̄. For mA1
>∼ 60 GeV,

both h and A1 can decay predominantly into LSP pairs and the decay into bb̄ is strongly

suppressed. Since the branching ratio of h → bb̄ is suppressed below 10% in most of the

allowed parameter space due to the presence of new competing decay modes, conventional
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searches for a light SM-like CP-even Higgs boson at the LHC will be quite hopeless. For

example, our results indicate that for about 60% of the surviving points, the final decay

products of h are two or four LSPs. For these points, weak boson fusion with h → invisible

is a good search channel [17]. Our results also indicate that for about 16% of the surviving

points, h decays predominantly to 4b. In this case, W/Zh production may be a good channel

to detect h [18].

0
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FIG. 3: Same as Fig. 1, but for the branching ratios of h and A1 versus mA1
with all constraints

imposed including aµ. The effect of the aµ constraint is to reduce the number of surviving points,

as shown in Figs. 1 and 2.

Second, consider smuon production at the LHC. If we take the aµ constraint seriously, the

smuon should be lighter than 200 GeV, which implies that it would be copiously produced

either directly or from cascade decays of other sparticles at the LHC, and should be visible

at the LHC. We checked that due to the non-negligible gaugino component of χ̃0
1, the decay

width of µ̃ → µχ̃0
1 is about several MeV, so the decay length of smuon is not macroscopic

(for a heavy charged particle with macroscopic decay length, its signals at the LHC may be

quite special [16]).

Third, consider the next-to-lightest neutralino χ̃0
2 at the LHC. As shown in Fig.4, χ̃0

2 is

bino-like for mχ̃0
2

<∼ 150 GeV, and may be higgsino-like for mχ̃0
2
> 150 GeV. We checked that
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FIG. 4: Same as Fig. 1, but showing dependence on M1, mχ̃0
2
and |N21| with all constraints imposed

including aµ. N21 denotes the coefficient of the bino component in χ̃0
2.

the main decay products of χ̃0
2 can be χ̃0

1h1, χ̃
0
1A1, χ̃

0
1h, or χ̃

0
1Z and there is a large portion

of the surviving samples in which χ̃0
2 → χ̃0

1A1(h1, h) → χ̃0
1χ̃

0
1χ̃

0
1. If χ̃0

2 is the NLSP and it

mainly decays into 3χ̃0
1, it will be copiously produced from the cascade decay of squarks and

gluinos [2], and can be easily mistaken as the LSP. From Fig.4 one can also learn that the

gaugino mass M1 is bounded from 50 GeV to 500 GeV. This implies by the gaugino mass

unification relation that the gluino mass varies from about 300 GeV to 3 TeV, which could

be accessible at the LHC.

In summary, we examined the current experimental constraints on the nMSSM. We found

that the parameter space of this model is stringently constrained by current experiments, and

in the allowed parameter space the phenomenology of this model may be quite peculiar. Such

tightly constrained parameter space could make this model readily tested (either verified or

excluded) at the LHC. In addition, since in this model the dark matter particle is constrained

in a narrow mass range, the astrophysical dark matter experiments may also be able to cast

some light on this model.
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