
1

Approximation-Degree-Based Interpolation: A New Interpolation

Method

Shiyou Lian

 Xi’an Shiyou University, Xi’an, China

sylian@xsyu.edu.cn

Abstract

This paper introduces the measure of approximate-degree and the concept of

approximate-degree function between numerical values, thus developing a new

interpolation method —— approximation-degree-based interpolation, i.e., AD

interpolation. One-dimensional AD interpolation is done directly by using correlative

interpolation formulas; n(n>1)-dimensional AD interpolation is firstly separated into n

parallel one-dimensional AD interpolation computations to do respectively, and then

got results are synthesized by Sum-Times-Difference formula into a value as the result

value of the n-dimensional interpolation. If the parallel processing is used, the

efficiency of n-dimensional AD interpolation is almost the same as that of the

one-dimensional AD interpolation. Thus it starts a feasible and convenient approach

and provides an effective method for high-dimensional interpolations. Furthermore, if

AD interpolation is introduced into machine learning, a new instance-based learning

method is expected to be realized.

Keywords Approximation-Degree; High-Dimensional Interpolation; First Separating

then Synthesizing; Parallel Processing; Sum-Times-Difference Formula;

Instance-Based Learning

1 Introduction

With the rapid development of artificial intelligence and machine learning, some of the

traditional numerical computation methods such as interpolation, data fitting and regression

analysis have aroused people's interest and become active fields again. Although there has

been sufficient research on interpolation, the results of high-dimensional interpolation are still

relatively few, and some of the existing high-dimensional interpolation methods
[2]

 have a large

load of computation and are not suitable for local interpolation. High-dimensional

interpolation has important applications in artificial intelligence and machine learning. For

example, instance-based learning
[3,4]

 often involves high-dimensional interpolation. Therefore,

the high-dimensional interpolation, especially that suitable for local interpolation, is still an

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

2

important subject worthy of serious study.

Inspired by the approximate evaluation method of flexible linguistic functions
[5, 6]

 in

reference [1], this paper intends to introduce the measure of approximate-degree between

numerical values to study the approximate evaluation of numerical functions, and then

explores the approach and method of interpolation based on approximate-degree, especially,

the method of high-dimensional interpolation based on approximate-degree.

2 Approximation Axiom, Approximation-Degree, and

Approximation-Degree Transmission

Approximation Axiom Let R be real number field, R
n
 be n-dimensional real vector

space, U=[a1, b1]×[a2, b2]×…×[an, bn]R
n
 (n1),V=[c, d]R, and y=f(x) (x=(x1, x2,…, xn))

be a continuous and non-chaotic function relation from U to V. If y0= f(x0) (x0U) is known,

then when xU is approximate to x0, y= f(x)V is also approximate to y0.

Definition 2-1 Let R be real number field, x0[a, b]R, and [0, 0][a, b] be a

neighborhood of x0, which is called the approximation domain of x0. For x[a, b], say x is

approximate to x0 if and only if x[0, 0].

Definition 2-2 Let R
n
 be n-dimensional real vector space, U be an n-dimensional

subspace of R
n
, x0=(𝑥10

, 𝑥20
,…, 𝑥𝑛0

)U, and CU be a "circular" region with center x0,

which is called an approximation domain of x0. For x=(x1, x2,…, xn)U, say x is

approximate to x0 if and only if xC.

Definition 2-3 Let R
n
 be n-dimensional real vector space, U=[a1, b1]×[a2, b2]×…×[an,

bn]R
n
, and x0=(𝑥10

, 𝑥20
,…, 𝑥𝑛0

)U. For x=(x1, x2,…, xn)U, say x is strictly

approximate to x0 if and only if the components x1, x2,…, xn of x are approximate to the

components 𝑥10
, 𝑥20

,…, 𝑥𝑛0
of x0, respectively, i.e., xi[i, i][ai, bi] ([i, i] is

approximation domain of 𝑥𝑖0
, i=1,2, … , n), and the "square" region [1, 1][2, 2] 

… [n, n]U is called strict approximation domain of x0.

In contrast to the strict approximation and strict approximation domain in Definition

2-3, we call the approximation and approximation domain defined in Definition 2-2 to be

ordinary approximation and ordinary approximation domain. It can be seen that the

ordinary approximation is the approximation at the level of points (vectors), while the strict

approximation is the approximation at the level of the coordinates of points (components of

vectors). The relation between the ordinary

approximation domain and the strict

approximation domain of the same point x0

is shown in Figure 2-1. The illustration also

shows visually the relationship between the

ordinary approximation and the strict

approximation.

We know that the approximate

evaluation of a function is to obtain the

approximate value of f(x’) in the condition

of a pair (x0, y0) of corresponding values of

function y=f(x) (x=(x1, x2,…, xn)) and x’

approximate to x0 being known. By the

x0

Figure 2-1 Illustration of the relation between

ordinary approximation domain and strict

approximation domain

Where the circular region is the ordinary

approximation domain of point x0, and the

square region is its strict approximation domain.

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

3

axiom of approximation above, when x’ is approximate to x0, f(x’)=y is approximate to

f(x0)=y0. But approximation is a flexible concept (i.e., flexible linguistic value
[1]

). In order to

characterize precisely these two approximation relations and the relation between them, we

introduce the measure of approximation-degree.

Definition 2-4 Let R be real number field, x0[a, b]R, and [0, 0][a, b] be the

approximation domain of x0. Set

1 −
𝑥0−𝑥

𝑥0−0
=

𝑥−0

𝑥0−0
, x[0, x0]

 𝐴𝑥0
(𝑥)= (2-1)

 1 −
𝑥−𝑥0

0−𝑥0
=

𝑥−0

𝑥0−0

, x[x0, 0]

to be called the approximation-degree of x to x0. Where x00=rl is called left approximation

radius of x0, 0x0=rr is called right approximation radius of x0. We call the function relation

defined by the Formula (2-1) to be the approximation-degree function of x0.

It can be seen that the range of approximation-degree function 𝐴𝑥0
(𝑥) is [0, 1] and it is

also reversible. In fact, it's easy to obtain that

 dx(x0 0)+0

𝐴𝑥0
(𝑥)1

= (2-2)

 dx(x00)+ 0

where dx [0, 1] is the approximation-degree of x to x0.

Definition 2-5 Let R
n
 be n-dimensional real vector space, U be an n-dimensional

subspace of R
n
, x0=(𝑥10

, 𝑥20
,…, 𝑥𝑛0

)U, and CU be an approximation domain of x0. Set

𝐴𝒙0
(𝒙)=1

 𝒙0−𝒙

𝑟
=1

 x i0
−𝑥i

2n
1

𝑟
, x=(x1, x2,…, xn)C (2-3)

to be called the approximation-degree of x to x0. Where r is the radius of C, and which is

called the approximation radius of x0.

We further consider the dependence relation between approximation-degree 𝐴𝑦0
(𝑦) and

𝐴𝒙0
(𝒙) under the constraint of function relation y= f(x). By Approximation Axiom, the closer

x is to x0, the closer y is to y0, thus the closer 𝐴𝑦0
(𝑦) is to 𝐴𝒙0

(𝒙). Then when the

corresponding approximation domains are small, we can simply agree that the two are equal,

that is, set

𝐴𝑦0
(𝑦)𝐴𝒙0

(𝒙)

This equation is equivalent to transmitting the approximation-degree of the independent

variable x to x0 to the corresponding function value y as the approximation-degree of y to y0.

3 Approximate Evaluation of Functions Based on Approximation-Degree

3.1 Approximate Evaluation of Univariate Functions Based on Approximation-Degree

Let R be real number field, U=[a, b]R, V=[c, d]R, y=f(x) be a continuous and non-chaotic

function relation from U to V. In the condition that a pair (x0, y0) of corresponding values of

function y=f(x) and x’ approximate to x0 being known, find the approximate value of f(x’).

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

4

Let the approximation domain of x0 be [a1, b1][a, b]. According to the definition of the

approximation-degree function above, the approximation-degree function of x0 is

𝑥−𝑎1

𝑥0−𝑎1
, x[a1, x0]

 𝐴𝑥0
(𝑥)= (3-1)

𝑥−𝑏1

𝑥0−𝑏1
, x[x0, b1]

And let the approximation domain of y0 is [c1, d1][c, d], the approximation-degree function

of y0 is

𝑦−𝑐1

𝑦0−𝑐1
, y[c1, y0]

 𝐴𝑦0
(𝑦)= (3-2)

𝑦−𝑑1

𝑦0−𝑑1
, y[y0, d1]

The inverse function of 𝐴𝑦0
(𝑦) that is not difficult to get is

dy(𝑦0 − 𝑐1)+c1, dy[0, 1]

 𝐴𝑦0
(𝑦)1

 = (3-3)

 dy(𝑦0 − 𝑑1)+d1, dy[0, 1]

where dy is the approximation-degree of y to y0.

The graphs of the approximation-degree functions 𝐴𝑥0
(𝑥) and 𝐴𝑦0

(𝑦) are shown in

Figure 3-1 and Figure 3-2, respectively.

Now we find the approximation-degree 𝐴𝑥0
 𝑥 ′ , and then set 𝐴𝑦0

(𝑦′)= 𝐴𝑥0
(𝑥′) (that is,

transmitting the approximation-degree of x' to x0 to y'); Further, we derive the required

approximate value of y' from approximation-degree 𝐴𝑦0
(𝑦′) and inverse function 𝐴𝑦0

(𝑦)1

of approximation-degree function of 𝐴𝑦0
 𝑦 .

It can be seen that the inverse function 𝐴𝑦0
(𝑦)1

 of 𝐴𝑦0
(𝑦) is a piecewise function,

which has two parallel expressions. Thus, substituting approximation-degree 𝐴𝑦0
(𝑦′)=d into

𝐴𝑦0
(𝑦)1

, we can get two y-values (y1 and y2). That is to say, from one x’ we obtain two

y-values (as shown in Figure 3-3). Then, which y-value should be chosen as the desired

approximate value of function’?

Figure 3-1 Graph of

approximation-degree function 𝐴𝑥0
(𝑥)

x

a

1

0
a1 x0 b1

𝐴𝑥0
(𝑥)

Figure 3-2 Graph of

approximation-degree function 𝐴𝑦0
(𝑦)

y

a

1

0
 c1 y0 d1

𝐴𝑦0
(𝑦)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

5

Obviously, the desired y-value is related to the orientation of x’ relative to x0 and the

trend (i.e., being increasing, decreasing, or a constant) of f(x) near x0. Thus, when the

derivative f’(x0) is not known, we can consider whether there is a point x* on the x’ side near

the point x0, whose corresponding value of function, f(x*)= y*, is known. If there is such a

point x*, we can estimate the trend of f(x) between the x0 and x* by utilizing the size relation

between the corresponding y* and y0, and then determine the choice of y-value. In fact, when

x*<x’<x0, if y*<y0, which then shows that the general trend of function f(x) is increasing on

the sub interval (x*, x0), thus the y1, i.e., that y-value less than y0, should be chosen; while if

y*>y0, which then shows that the general trend of function f(x) is decreasing on the

subinterval (x*, x0), thus the y2, i.e., that y-value larger than y0, should be chosen. Similarly,

when x0<x’<x*, if y0<y*, which then shows that the general trend of function f(x) is increasing

on the subinterval (x0, x*), thus the y2 should be chosen; while if y0> y*, which then shows

that the general trend of function f(x) is decreasing on the subinterval (x0, x*), thus the y1

should be chosen. But, if y*=y0, which then shows that the function f(x) is likely a constant on

the subintervals (x*, x0) or (x0, x*), thus y=y0 can be taken no matter x*<x’<x0 or x0<x’<x*.

3.2 Approximate Evaluation of Multivariate Functions Based on

Approximation-Degree

Let's take the function of two variables as an example to discuss this problem.

Let z=f(x, y) be a function (relation) from [a1, b1]×[a2, b2] to [c, d]. Suppose a pair of

corresponding values, ((x0, y0), z0), of function z=f(x, y) are known, and point (x’, y’) is

approximate to point (x0, y0). In the case that expression of function f(x, y) is unknown or not

used, find the approximate value of f(x’, y’).

This problem is similar to the problem of function of one variable above, so we extend

the above treatment to function of two variables, that is, we can find the approximate value of

the function at point (x’, y’) from the approximation-degree of point (x’, y’) to point (x0, y0).

Concretely, firstly get the approximation-degree 𝐴 𝑥0 ,𝑦0 (𝑥′, y′) , then set

𝐴𝑧0
 𝑧′ =𝐴 𝑥0 ,𝑦0 (𝑥′, y′); and then, substitute it into inverse function 𝐴𝑧0

 𝑧 1
 of 𝐴𝑧0

 𝑧 . Here,

there will also be two z-values. Thus, we can consider whether there is an adjacent point (x*,

y*) of point (x0, y0) in the direction determined by points (x0, y0) and (x’, y’), whose function

value is known. If there exists such a point (x*, y*) (as shown in Figure 3-4), then we can

determine the choice of z-value by taking f(x*,y*) as a reference.

However, although the technique is feasible in theory, it has precondition, it requires that

the points (x*,y*), (x0, y0) and (x’, y’) must be exactly on a straight line. So, the method has

some limitations for multivariate functions. Then, is there a better way?

Figure 3-3 One x’ is related to two y-values

x

𝐴𝑥0
(𝑥)

a

d

0
 x' x0 y

a

0
 y1 y0 y2

𝐴𝑦0
(𝑦)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

6

By the definition of strict approximation

(see Definition 2-3), point (x’, y’) is

approximate to point (x0, y0) is equivalent to x'

is approximate to x0 and y' is approximate to y0.

Thus, we can find the approximate values zx

and zy of function f(x, y0) and f(x0, y) at x' and y',

respectively. Thus, we further imagine that if

there is respectively an adjacent point of point

(x0, y0) in the x-direction and y-direction of the

point (x0, y0), which is respectively (x*, y0) and

(x0, y*), as shown in Figure 3-5, and the

corresponding function values f(x*, y0) and

f(x0, y*) are known, then the approximate

value zx of f(x’, y0) can be got by utilizing f(x*,

y0), and the approximate value zy of f(x0, y’)

can be got by utilizing f(x0, y*), just like that

of the previous univariate function. Thus, we

firstly find separately the

approximation-degree 𝐴𝑥0
(𝑥′) and 𝐴𝑦0

(𝑦′) ,

then set 𝐴𝑧0
 𝑧′ = 𝐴𝑥0

(𝑥′) , and 𝐴𝑧0
 z′ =

𝐴𝑦0
(𝑦′); and then, substitute them separately

into inverse function 𝐴𝑧0
 𝑧 1

 of 𝐴𝑧0
 𝑧 and

get two pairs of candidate z-values, then

taking f(x*, y0) and f(x0, y*) as reference,

choose zx and zy from respective candidate values, respectively (as shown in Figure 3-5).

Having got the approximate values zx and zy, how can we further obtain the approximate

value z we need? Can zx and zy be synthesized into one z? For example, take the average value

or weighted sum of zx and zy as z. But numerical experiments show that although the average

value or weighted sum can be taken as the synthesis value, but the effect is generally not very

ideal. However, fortunately, on the basis of the average value, by analyzing further, we have

found a better way to synthesize zx and zy.

Let z1=(zx+zy)/2 be the average

of zx and zy. It can be seen from

Figure 3-6 that z1 can actually be

viewed as an approximate value of

f(x, y) at midpoint (denoted by (x1,

y1)) between (x’, y0) and (x0, y’).

We can see from the figure that

z1<z0, i.e., the varying trend of

function values from z0 to z1 is

decreasing. Set z0z1=c1 (c1 is the

length of segment BC in Figure 3-7(a)), then z1=z0c1. Then, according to the varying trend of

function values from z0 to z1 (i.e., the slope of segment AB in Figure 3-7(a)), also, taking into

account that point (x1, y1) is just the midpoint of segment joining points (x’, y’) and (x0, y0),

(x0, y*)

(x’, y0)

(x0, y’)
(x’, y’)

(x*, y0)
(x0, y0)

zx

z0

z1

zy

Figure 3-6 Illustration 1 of synthesizing zx and zy into z

z

y

x

Figure 3-4 Utilizing the value of the

function at point (x*,y*) to determine the

approximate value of f(x’, y’)

(x0, y0)

(x*, y*)

(x’, y’)

Figure 3-5 Utilizing the values of the

function at points (x*, y0) and (x0, y*) to

determine the approximate values of f(x’, y0)

and f(x0, y’), respectively

(x0, y*)

(x*, y0)
(x0, y0)

(x0, y’)

(x’, y0)

 (x’, y’)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

7

that is, 𝑥′, 𝑦′ − (𝑥0 , 𝑦0) =2 𝑥1, 𝑦1 − (𝑥0 , 𝑦0) , so we infer that the approximate value

of function at point (x’, y’) can be z02c1 (as shown in Figure 3-7(a)). Thus, it follows that

z=z02c1=z02(z0z1)=z02[z0(zx+zy)/2] = zx+zy z0

Of course, z1 may also be greater than z0 or equal to z0. If z1>z0, then the varying trend of

function values from z0 to z1 is increasing (as shown in Figure 3-7(b)). Set z0z1=c2 (c2 is the

length of segment BC in Figure 3-7(b)), then z1=z0c2. Then, according to the varying trend of

function values from z0 to z1 (i.e., the slope of segment AB in Figure 3-7(b)), we infer that the

value of function at point (x’, y’) can be z02c2. Thus,

z=z0+2c2=z0+2(z1z0)=z0+2[(zx+zy)/2z0] = zx+zyz0

The third case: z1=z0. This indicates that the values of function remain unchanged from z0

to z1. Thus, we can take z=z0. And by z0=z1= (zx+zy)/2, it follows that 2z0=zx+zy. Thus,

z=2z0 z0= zx+zy z0

In summary, we see that, no matter what relationship may be between the average of zx

and zy and the z0, or no matter how the value of the function varies from z0 to z1, the

approximate value of the function at point (x’, y’) can always be taken as

z= zx+zy z0 (3-4)

Synthesizing the above analysis, we obtain a method for finding the approximate value

of the function at the point (x’, y’) in the condition of that there are adjacent points (x*, y0)

and (x0, y*) of point (x0, y0). That is, find firstly the approximate values of f(x’, y0) and f(x0, y’),

zx and zy, respectively, by f(x0, y0)=z0 and approximation-degrees 𝐴𝑥0
(𝑥′) and 𝐴𝑦0

(𝑦′) and

by utilizing f(x*, y0) and f (x0, y*), and then synthesize zx and zy into a value z by Formula

(3-4) as the approximate value of f(x’, y’).

Now we see that here we separate actually the approximate evaluation of a function of

two variables into the approximate evaluation of two functions of one variable, then,

synthesize two obtained approximate values into a value as an approximate value of the

original function of two variables.

It is not difficult to see that the idea and method of “first separating then synthesizing” in

the approximate evaluation of the functions of two variables above can also be extended to

the approximate evaluation of the functions of three variables. That is to say, in the condition

(a) (b)

 Figure 3-7 Illustration 2 of synthesizing zx and zy into z

B

z

y

x

z0

z1

z

A

(x’, y’)
(x1, y1)

(x0, y0)

C

y

x

z

z

z1

z0
C

A

B

(x1, y1)
(x’, y')

(x0, y0)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

8

of a pair ((x0, y0, z0), u0) of corresponding values of function of three variables, u= f(x, y, z),

being known and point (x’, y’, z’) being approximate to point (x0, y0, z0), if there is

respectively an adjacent point of the point (x0, y0, z0) on the sides of corresponding

coordinates x’, y’ and z’ of point (x’, y’, z’) in the x-direction, y-direction and z-direction of the

point (x0, y0, z0), which respectively is (x*, y0, z0), (x0, y*, z0) and (x0, y0, z*) (as shown in

Figure 3-8), and the corresponding values of function, f(x*, y0, z0), f(x0, y*, z0) and f(x0, y0, z*),

are known, then we can find firstly the approximate values of f(x’, y0, z0), f(x0, y’, z0) and f(x0,

y0, z’), ux, uy and uz, respectively, by f(x0, y0,z0)=u0 and approximation-degrees 𝐴𝑥0
(𝑥′),

𝐴𝑦0
(𝑦′) and 𝐴𝑧0

 𝑧′ and by utilizing f(x*,y0,z0), f(x0, y*,z0) and f(x0, y0, z*), and then

synthesize the ux, uy and uz into a value u as the approximate value of f(x’, y’, z’).

From the synthesizing formula of approximate values of the function of two variables,

z=zx+zyz0=zx+zy1z0, we infer that the synthesizing formula of approximate values of the

function of three variables should be

u= ux+uy+uz 2u0 (3-5)

In fact, when (x’, y’, z’)= (x0, y0, z0), ux=uy=uz=u0, while on the other hand, u0=

u0+u0+u02u0. This indicates that for the especial point (x0, y0, z0), the Formula (3-5) is correct.

This indirectly verifies the rationality of the synthesizing formula (the three-dimensional AD

interpolation example in Section 5.2 further confirms that the Formula (3-5) is reasonable).

Based on the above analysis, generally, in the condition of a pair (x0, y0)

(x0=(𝑥10
,𝑥20

,…,𝑥𝑛0
)) of corresponding values of function of n variables, y=f(x) (x=(x1, x2, … ,

xn)) being known and point x’=(x1’, x2’, … , xn’) being approximate to point x0, if there is an

adjacent point of the point x0 on the side of corresponding coordinate of point x’ in the each

coordinate direction of point x0, that is there exist points (x1*, 𝑥20
,…, 𝑥𝑛0

), (𝑥10
,

x2*,…,𝑥𝑛0
),…, and (𝑥10

, 𝑥20
,…, xn*), and the corresponding values of function are known,

then we can find firstly the approximate values of f(x1’, 𝑥20
,…,𝑥𝑛0

), f(𝑥10
, x2’,…,𝑥𝑛0

) , … ,

and f(𝑥10
,𝑥20

,…,xn’), 𝑦𝑥1
, 𝑦𝑥2

, … , 𝑦𝑥𝑛
, respectively, by f(x0)=y0 and approximation-degrees

𝐴𝑥0
(𝑥1′), 𝐴𝑥0

(𝑥2′) , … , 𝐴𝑥0
(𝑥𝑛 ′) and by utilizing the values of function at these adjacent

points, f(x1*, 𝑥20
,…,𝑥𝑛0

), f(𝑥10
,x2*,…,𝑥𝑛0

),…, f(𝑥10
, 𝑥20

,…, xn*), and then synthesize the

𝑦𝑥1
, 𝑦𝑥2

, … , 𝑦𝑥𝑛
 into a value y as the approximate value of f(x’), and the formula of

synthesizing these approximate values is

Figure 3-8 Utilizing the values of the function at points

(x*,y0,z0),(x0,y*,z0) and (x0,y0,z*) to determine the approximate values

of f(x’, y0,z0), f(x0, y’,z0) and f(x0, y0,z’), respectively

(x0, y*,z0)

(x*,y0, z0)
(x0,y0, z0)

(x0, y’,z0)

(x’,y’,z’)

(x0,y0, z*)

(x’,y0, z0)
(x0,y0, z’)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

9

y=
0

1

)1(yny
n

i

xi




 (3-6)

In this way, we obtain an effective approach and method to find approximate values of

multivariate functions.

For convenience of narration, we may as well refer to the formula (3-6) as the

Sum-Times-Difference formula.

4 Interpolation Based on Approximation-Degree

Let y=f(x) be a function (relation) from [a, b] to [c, d], and (𝑥𝑖 , 𝑦𝑖) 𝑖=1
𝑛 be a set of pairs of

corresponding values of function y=f(x). Require to construct an interpolating function g(x) in

the case that the expression of function f(x) is unknown or not used, such that g(xi)= f(xi) (i=1,

2, … , n), and for other x[a, b], g(x) f(x). This is the usual interpolation problem.

The readers may have noticed that the method finding functional approximate value

based on approximation-degree above can also be used for interpolation. Below we discuss

specifically this problem.

Let ax1<x2< , … , < xnb, then 𝑥𝑖 𝑖=1
𝑛 is a set of interpolation base points (or nodes).

We definite the approximation domain of x1 is [x1, x2], the approximation domains of xi are

[xi1, xi1] (i=2, 3, … , n1), and the approximation domain of xn is [xn1, xn], and definite the

approximation-degree function of base point x1 is

 𝐴𝑥1
(𝑥)=

𝑥−𝑥2

𝑥1−𝑥2
, x[𝑥1, 𝑥2] (4-1)

The approximation-degree functions of xi is

𝑥−𝑥𝑖−1

𝑥𝑖−𝑥𝑖−1
, x[𝑥𝑖1 , 𝑥𝑖]

 𝐴𝑥𝑖
(𝑥)= (4-2)

𝑥−𝑥𝑖+1

𝑥𝑖−𝑥𝑖+1
, x[𝑥𝑖 , 𝑥𝑖1]

And the approximation-degree function of xn is

 𝐴𝑥𝑛
(𝑥)=

𝑥−𝑥𝑛−1

𝑥𝑛−𝑥𝑛−1
, x[𝑥𝑛1, 𝑥𝑛] (4-3)

The graphs of these functions are shown in Figure 4-1.

Figure 4-1 Graphs of the approximation-degree functions of numbers x1, x1,…, xn

x

a

1

0

𝑥1 𝑥i−1
𝑥𝑖−1+𝑥𝑖

2
 𝑥𝑖

𝑥𝑖+𝑥𝑖+1

2
 𝑥𝑖+1 𝑥𝑛

 𝐴𝑥1
 𝑥 𝐴𝑥𝑖1

 𝑥 𝐴𝑥𝑖
 𝑥 𝐴𝑥𝑖1

(𝑥) 𝐴𝑥𝑛
 𝑥

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

10

Notes:

 Here, the approximation domain of a number xi is determined not only by xi as before,

but by two neighbors of xi, xi1 and xi1.Therefore, two approximation radii rl= xi xi-1 and rr=

xi+1xi of the number xi defined by Equation (4-2) are not necessarily equal. For the sake of

distinction, we call the approximation domain determined by a number alone to be the

absolute approximation domain of the number, and the approximation domain determined

by its two neighbors to be the relative approximation domain of the number. In the absence

of a special statement, the subsequent approximation domains refer to the relative

approximation domains.

 When x[𝑥𝑖1 ,
𝑥𝑖1+𝑥𝑖

2
), 𝐴𝑥𝑖

(𝑥)<0.5 and 𝐴𝑥𝑖−1
(𝑥)>0.5, this shows that x is closer to

𝑥𝑖1; similarly, when x(
𝑥𝑖+𝑥𝑖+1

2
, 𝑥𝑖+1], 𝐴𝑥𝑖

(𝑥)<0.5 and 𝐴𝑥𝑖+1
(𝑥)>0.5, this shows that x is

closer to xi+1; and only when x[
𝑥𝑖+𝑥𝑖−1

2
,

𝑥𝑖+𝑥𝑖+1

2
], 𝐴𝑥𝑖

(𝑥)0.5. If we make an appointment: a

point x is practically approximate to the base point xi, if and only if its approximation-degree

𝐴𝑥𝑖
(𝑥)0.5, then interval [

𝑥𝑖+𝑥𝑖−1

2
,

𝑥𝑖+𝑥𝑖+1

2
] is the practical domain of approximation-degree

function 𝐴𝑥𝑖
(𝑥), and that is also, the practical approximation domain of xi (while interval

[xi-1, xi+1] is the conceptual domain of 𝐴𝑥𝑖
(𝑥) and conceptual approximation domain of

xi). And then, in the sense of practical approximation, we have the following conclusion.

Proposition 4-1 A point x is practically approximate to the base point xi (i.e.

𝐴𝑥𝑖
(𝑥)0.5), if and only if x lies in the practical approximation domain ([

x i +x i−1

2
,

x i +xi+1

2
]) of

the xi.

We then define the approximation-degree functions of yi (i=1, 2, … , n) in the same

principle and way.

First, we point out that y1, y2 , … , yn corresponding to x1, x2 , … , xn in order do not

necessarily satisfy y1<y2< , … , <yn. In fact, the size relationship between yi and yi1 in the

sample data may be yi<yi1, yi=yi1, or yi>yi1; the size relationship between yi and yi+1 in the

sample data may be yi<yi+1, yi=yi+1, or yi>yi+1 . We also noticed that when x lies between 𝑥𝑖1

and 𝑥𝑖 , the corresponding y lies certainly between 𝑦𝑖1 and 𝑦𝑖 ; and when x lies between 𝑥𝑖

and 𝑥𝑖+1, the corresponding y lies certainly between yi and yi+1. Thus, we only need to

consider separately four (semi) approximation-degree functions of number yi in the four cases

of yi1<yi, yi<yi1, yi<yi+1, and yi+1<yi.

(1) Suppose yi1<yi. We define the first sub expression of the approximation-degree

function of yi in this case to be

𝐴𝑦𝑖
(𝑦)=

𝑦−𝑦𝑖−1

𝑦𝑖−𝑦𝑖−1
=

1

𝑦𝑖−𝑦𝑖−1
𝑦 −

𝑦𝑖−1

𝑦𝑖−𝑦𝑖−1
, y[𝑦𝑖1, 𝑦𝑖] (4-4)

Its graph is shown in Figure 4-2(a).

(2) Suppose yi<yi1. We define the second sub expression of the approximation-degree

function of yi in this case to be

𝐴𝑦𝑖
(𝑦)=

𝑦𝑖−1−𝑦

𝑦𝑖−1−𝑦𝑖
=

1

𝑦𝑖−𝑦𝑖−1
𝑦 −

𝑦𝑖−1

𝑦𝑖−𝑦𝑖−1
, y[𝑦𝑖 , 𝑦𝑖1] (4-5)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

11

Its graph is shown in Figure 4-2(b).

(3) Suppose yi<yi+1. We define the second sub expression of the approximation-degree

function of yi in this case to be

𝐴𝑦𝑖
(𝑦)=

𝑦𝑖+1−𝑦

𝑦𝑖+1−𝑦𝑖
=

1

𝑦𝑖−𝑦𝑖+1
𝑦 −

𝑦𝑖+1

𝑦𝑖−𝑦𝑖+1
, y[𝑦𝑖 , 𝑦𝑖+1] (4-6)

Its graph is shown in Figure 4-2(c).

(4) Suppose yi+1<yi. We define the first sub expression of the approximation-degree

function of yi in this case to be

𝐴𝑦𝑖
(𝑦)=

𝑦−𝑦𝑖+1

𝑦𝑖−𝑦𝑖+1
=

1

𝑦𝑖−𝑦𝑖+1
𝑦 −

𝑦𝑖+1

𝑦𝑖−𝑦𝑖+1
, y[𝑦𝑖+1, 𝑦𝑖] (4-7)

Its graph is shown in Figure 4-2(d).

Obviously, in the four expressions above, (4-4)=(4-5) and (4-6)=(4-7). That is to say, no

matter yi1<yi or yi<yi1, when y lies between yi1 and yi, the expression of

approximation-degree function of yi is always

𝐴𝑦𝑖
(𝑦) =

𝑦−𝑦𝑖−1

𝑦𝑖−𝑦𝑖−1
=

1

𝑦𝑖−𝑦𝑖−1
𝑦 −

y 𝑖−1

𝑦𝑖−𝑦𝑖−1

and no matter yi+1<yi or yi<yi+1, when y lies between yi and yi+1, the expression of

approximation-degree function of yi is always

𝐴𝑦𝑖
(𝑦)=

𝑦−𝑦𝑖+1

𝑦𝑖−𝑦𝑖+1
=

1

𝑦𝑖−𝑦𝑖+1
𝑦 −

y 𝑖+1

𝑦𝑖−𝑦𝑖+1

Thus, the above 4 functional expressions can be reduced as two expressions.

Further, it can be seen that the coefficients of the first degree terms,
1

𝑦𝑖−𝑦𝑖−1
 and

1

𝑦𝑖−𝑦𝑖+1
,

in these two expressions are just the slopes of the corresponding straight lines. So they being

positive or negative decide the corresponding function to be increasing or decreasing. Thus,

function y=f(x) being incremented or decremented on the subinterval [
𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] and

Figure 4-2 Approximation-degree functions of number yi under different conditions

(a)

a

1

0

𝐴𝑦 𝑖
(𝑦)

y 𝑦i−1 𝑦𝑖

(b)

a

1

0

𝐴𝑦𝑖
(𝑦)

y 𝑦i 𝑦𝑖−1

a

1

0

𝐴𝑦𝑖
(𝑦)

y 𝑦i 𝑦𝑖+1

(c)

a

1

0

𝐴𝑦𝑖
(𝑦)

y 𝑦i+1 𝑦𝑖

(d)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

12

[𝑥𝑖 ,
𝑥𝑖+𝑥𝑖+1

2
] are respectively determined by the signs of differences 𝑦𝑖𝑦𝑖1 and 𝑦𝑖𝑦𝑖+1.

This means that the numerical calculation takes the place of the logical judgment for the trend

of function f(x) on the subintervals [
𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] and [𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
].

And then, we get the inverse expressions of these two functional expressions,

respectively

𝐴𝑦𝑖
(𝑦)1

=dy(yi-yi1)+yi1 (4-8)

and

𝐴𝑦𝑖
(𝑦)1

=dy(yi-yi+1)+yi+1 (4-9)

Here dy=𝐴𝑦𝑖
(𝑦)[0, 1] is the approximation-degree of y to yi.

Now, we transmit the approximation-degree of x (x[
𝑥𝑖+𝑥𝑖−1

2
,

𝑥𝑖+𝑥𝑖+1

2
]) to xi to the

corresponding y, that is, set

dy=dx=𝐴𝑥𝑖
 𝑥

Also, considering that on the subinterval [
𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖], the interpolated function y=f(x) may

being increasing, decreasing, or a constant; while when y=f(x) is increasing, certainly yi-1<yi,

so the corresponding y[
𝑦𝑖+𝑦𝑖−1

2
, 𝑦𝑖]; when y=f(x) is decreasing, certainly yi<yi-1, so the

corresponding y[𝑦𝑖 ,
𝑦𝑖+𝑦𝑖−1

2
]; and when y=f(x) is a constant, yi=yi-1, so the corresponding

y=yi[
𝑦𝑖+𝑦𝑖−1

2
, 𝑦𝑖] as well as y[𝑦𝑖 ,

𝑦𝑖+𝑦𝑖−1

2
]. Thus, when x[

𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖], the corresponding

yi and yi-1 are adjacent, and here 𝐴𝑥𝑖
 𝑥 =

x−x i−1

x i−x i−1
, thus, the expression of the corresponding

inverse function 𝐴𝑦𝑖
(𝑦)1

 in Equation (4-8) becomes

𝐴𝑦𝑖
(𝑦)1

=
𝑥−𝑥𝑖−1

𝑥𝑖−𝑥𝑖−1
(yiyi1)+yi1

 =
𝑦𝑖−𝑦𝑖−1

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑥𝑖𝑦𝑖−1−𝑥𝑖−1𝑦𝑖

𝑥𝑖−𝑥𝑖−1

namely

 y=
𝑦𝑖−𝑦𝑖−1

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑥𝑖𝑦𝑖−1−𝑥𝑖−1𝑦𝑖

𝑥𝑖−𝑥𝑖−1
, x[

𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] (4-10)

Similarly, on the subinterval [𝑥𝑖 ,
𝑥𝑖+𝑥𝑖+1

2
], the function y=f(x) may being increasing,

decreasing, or a constant; while when y=f(x) is increasing, certainly yi < yi+1, so the

corresponding y[𝑦𝑖 ,
𝑦𝑖+𝑦𝑖+1

2
]; when y=f(x) is decreasing, certainly yi+1 < yi, so the

corresponding y[
𝑦𝑖+𝑦𝑖+1

2
, 𝑦𝑖]; and when y=f(x) is a constant, yi=yi+1, so the corresponding

y=yi[
𝑦𝑖+𝑦𝑖+1

2
, 𝑦𝑖] as well as y[𝑦𝑖 ,

𝑦𝑖+𝑦𝑖+1

2
]. Thus, when x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
], the corresponding yi

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

13

and yi+1 are adjacent, and here 𝐴𝑥𝑖
(𝑥)=

𝑥𝑖+1−𝑥

𝑥𝑖+1−𝑥𝑖
, thus, the expression of the corresponding

inverse function 𝐴𝑦𝑖
(𝑦)1

 in Equation (4-9) becomes

 𝐴𝑦𝑖
(𝑦)1

=
𝑥𝑖+1−𝑥

𝑥𝑖+1−𝑥𝑖
(yiyi+1)+yi+1

 =
𝑦𝑖−𝑦𝑖+1

𝑥𝑖−𝑥𝑖+1
𝑥 +

𝑥𝑖𝑦𝑖+1−𝑥𝑖+1𝑦𝑖

𝑥𝑖−𝑥𝑖+1

namely

y=
𝑦𝑖−𝑦𝑖+1

𝑥𝑖−𝑥𝑖+1
𝑥 +

x i y i+1−x i+1y i

x i−x i+1
, x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
] (4-11)

Thus, with the two expressions, we can obtain directly the corresponding y[
𝑦𝑖+𝑦𝑖−1

2
, 𝑦𝑖]

or [𝑦𝑖 ,
𝑦𝑖+𝑦𝑖−1

2
] from x[

𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖], and obtain directly the corresponding y[𝑦𝑖 ,

𝑦𝑖+𝑦𝑖+1

2
]

or [
𝑦𝑖+𝑦𝑖+1

2
, 𝑦𝑖] from x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
], but do not need to get approximation-degree and to

evaluate inverse function.

Actually, Equations (4-10) and (4-11) are two interpolating formulas. Thus, using these

two interpolation formulas, we can solve the interpolation problem mentioned above. In fact,

for the evaluated point x[a, b], we only need to seek firstly the approximation domain the

point x lies (This is equivalent to seeking nearest base point xi (i{1,2,…,n})), then to

construct and use the corresponding interpolating formula according to the position of x

relative to xi to do interpolation.

In this way, we actually derive an interpolation method by the approximate evaluation of

function based on approximation-degree. We call this method to be the

approximation-degree-based interpolation, or AD interpolation for short.

Specifically, the practice of AD interpolation is: take base points (or, nodes) a=

𝑥1 , 𝑥2 , … , 𝑥𝑛=𝑏 as points of view, according to base points and their approximation domains

to partition interval [a, 𝑏]=[𝑥1 , 𝑥𝑛] into 2n2 subintervals as shown in Figure 4-3, [𝑥1 ,
𝑥1+𝑥2

2
],

[
𝑥1+𝑥2

2
, 𝑥2], [𝑥2 ,

𝑥2+𝑥3

2
],…,[

𝑥𝑛−1+𝑥𝑛

2
, 𝑥𝑛], as interpolation intervals; then, for evaluated point

x[
𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] do interpolating with Formula (4-10), for evaluated point x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
] do

interpolating with Formula (4-11). Since each specific interpolating formula implies the trend

of interpolated function y=f(x) on the corresponding subintervals, therefore, there is no much

error between the obtained approximate value and the expected value, and there would not

occur the case that two y-values are got from an x.

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

14

Example 4.1 Use AD interpolation to do interpolating to functions y=sin x and y=cos x,

respectively.

We take sampled-data points of y=sin x, (xi, yi), as follows:

xi: 0×π, 0.1×π, 0.2×π, 0.3×π, … , 1.9×π, 2×π.

yi: sin(xi).

and take evaluated points x: 0×π, 0.02×π, 0.04×π, 0.06×π, … , 1.98×π, 2×π.

By using our AD interpolation to do interpolating (programmed with MATLAB), the

corresponding y-values obtained are as follows:

 0 0.0624 0.1249 0.1873 0.2497 0.3118 0.3681 0.4245 0.4808

0.5371 0.5923 0.6369 0.6816 0.7263 0.7710 0.8133 0.8420 0.8707

0.8994 0.9281 0.9530 0.9629 0.9728 0.9827 0.9926 0.9975 0.9876

0.9778 0.9679 0.9580 0.9424 0.9138 0.8851 0.8564 0.8277 0.7934

0.7487 0.7040 0.6593 0.6146 0.5653 0.5089 0.4526 0.3963 0.3400

0.2809 0.2185 0.1561 0.0936 0.0312 0.0312 0.0936 0.1561 0.2185

0.2809 0.3400 0.3963 0.4526 0.5089 0.5653 0.6146 0.6593

0.7040 0.7487 0.7934 0.8277 0.8564 0.8851 0.9138 0.9424 0.9580

0.9679 0.9778 0.9876 0.9975 0.9926 0.9827 0.9728 0.9629

0.9530 0.9281 0.8994 0.8707 0.8420 0.8133 0.7710 0.7263 0.6816

0.6369 0.5923 0.5371 0.4808 0.4245 0.3681 0.3118 0.2497 0.1873

0.1249 0.0624 0.0000

The interpolation effect is shown in Figure 4-4(a).

To function y=cos x, we do interpolating with the same method and data, the

interpolation effect is shown in Figure 4-4(b).

Figure 4-4 The effect drawings of AD interpolation to functions y=sin x and y=cos x

Where the blue circles, “○”, in the graph indicate the sample data points, and the red

crosses, "+", indicate the points obtained by AD interpolation.

(a) (b)

Figure 4-3 Illustration of interpolation intervals partitioned by base points and their

approximation domains in one-dimensional interpolation

Where the solid lines indicate the boundaries between approximation domains of base

points xi, and a dotted line further divides an approximation domain into two parts

x

x1
𝑥1+𝑥2

2
 x2

𝑥2+𝑥3

2
 x3

𝑥3+𝑥4

2
 …

𝑥𝑛−2+𝑥𝑛−1

2
 𝑥𝑛−1

𝑥𝑛−1+𝑥𝑛

2
 𝑥𝑛

…

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

15

Accuracy analysis:

sin x: maximum error 0.0121, minimum error 0, average error 0.0052

 cos x: maximum error 0.0122, minimum error 0, average error 0.0052

 Actually, it can be seen from the interpolation formulas that one-dimensional AD

interpolation is a local linear interpolation. That is to say that this one-dimensional AD

interpolation has the effect of “reaching the same goal from different routes” with usual local

linear interpolation.

5 Multidimensional and High-Dimensional Interpolations Based on

Approximation-Degree

5.1 Two-Dimensional AD Interpolation

Suppose some data points of function of two variables, z=f(x, y), ((xi, yj), zij) (i=1,2,…,n,

j=1,2,…,m), are known, and the base points (xi, yj) are regularly distributed, that is, they

satisfy ax=x1<x2< , … , <xn=bx and ay = y1<y2< , … , <ym=by, and can also form an m×n

matrix:

(x1, y1), (x2, y1), … , (xn, y1)

(x1, y2), (x2, y2), … , (xn, y2)

 … … …

(x1, ym), (x2, ym), … , (xn, ym)

Correspondingly, they form a Cartesian grid on the x-y plane (as shown in Figure 5-1). We

consider corresponding interpolation problem.

For this kind of two-dimensional interpolation (actually, this kind of interpolation is also

usual two-dimensional interpolation), we use firstly the idea and technique similar to AD

interpolation in Section 4 above, that is, take base points (x1, y1), … , (xn, ym) as points of view,

according to base points and their approximation domains to partition region U=[ax, bx]×[ay,

by]=[𝑥1 , 𝑥𝑛]×[𝑦1 , 𝑦𝑚] into (2n2)×(2m2) sub-regions as shown in Figure 5-1 as

Figure 5-1 Illustration of interpolation regions partitioned by base points and their

approximation domains in two-dimensional AD interpolation

Where the regions enclosed by solid lines are the approximation domains of base points

(xi, yj), and the dotted lines further divide an approximation domain into two or four parts

y2 + y3

2

y1 + y2

2

y3

y2

y1

x1
x1+x2

2
 x2

x2+x3

2
 x3

x3+x4

2 𝑥4

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

16

interpolation regions; then, for evaluated point (x, y)U, seek the sub-region it lies (This is

equivalent to seek the corresponding nearest base point (xi, yj) (i{1,2,…,n}, j{1,2,…,m})

and determine the position of (x, y) relative to (xi, yj)), and then to do interpolation.

However, for the interpolation on these two-dimensional sub-regions, we have not

derived the corresponding interpolating formulas. Since these base points are regularly

distributed, that is, each base point has the adjacent base point(s) in the direction of its

coordinates, so we use the technique of “first separating then synthesizing” described in

Section 3.2 above to get the interpolated value at point (x, y). Specifically, first separate

interpolating computation of evaluated point (x, y) with corresponding nearest base point (xi,

yj) into interpolating computation of x with xi and interpolating computation of y with yj, and

getting respectively the corresponding approximate values zx and zy; then synthesize zx and zy

into a value z as the interpolated value at point (x, y).

Obviously, the two interpolating computations obtained from the separation are already

one-dimensional interpolating computations, so previous two interpolating formulas can be

used. But, here the corresponding interpolating formulas are with respect to x and y,

respectively, and which have the total of four formulas separated as two pairs:

 z=
𝑧𝑖𝑗 −𝑧𝑖−1,𝑗

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑥𝑖𝑧𝑖−1,𝑗−𝑥𝑖−1𝑧𝑖𝑗

𝑥𝑖−𝑥𝑖−1
, x[

𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] (5-1)

z=
𝑧𝑖𝑗 −𝑧𝑖+1,𝑗

𝑥𝑖−𝑥𝑖+1
𝑥 +

𝑥𝑖𝑧𝑖+1,𝑗−𝑥𝑖+1𝑧𝑖𝑗

𝑥𝑖−𝑥𝑖+1
, x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
] (5-2)

 z=
𝑧𝑖𝑗 −𝑧𝑖,𝑗−1

𝑦𝑗−𝑦𝑗−1
𝑦 +

𝑦𝑗𝑧𝑖,𝑗−1−𝑦𝑗−1𝑧𝑖𝑗

𝑦𝑗−𝑦𝑗−1
, y[

𝑦𝑗 +𝑦𝑗−1

2
, 𝑦𝑗] (5-3)

z=
𝑧𝑖𝑗 −𝑧𝑖,𝑗+1

𝑦𝑗−𝑦𝑗+1
𝑦 +

𝑦𝑗 𝑧𝑖,𝑗+1−𝑦𝑗+1𝑧𝑖𝑗

𝑦𝑗−𝑦𝑗+1
, y[𝑦𝑗 ,

𝑦𝑗 +𝑦𝑗+1

2
] (5-4)

where zijf(xi, yj).

Of course, for an evaluated point (x, y)U, we need only choose a formula with respect

to x and a formula with respect to y. As to which two formulas will be used, it should be

determined according to the subintervals that x and y lie respectively. For example, if

x[
x i +xi−1

2
, 𝑥𝑖] and y[𝑦𝑗 ,

y j +yj+1

2
], then Formulas (5-1) and (5-4) should be respectively

used.

 After getting corresponding zx and zy by two formulas used, it is must to synthesize them

into a value z. From Formula (3-7) in Section 3.2, here the formula that synthesizes zx and zy

should be

z= zx+zy zij (5-5)

In this way, we have extended the AD interpolation to two-dimensional interpolation.

From the Formula (5-5) it can be seen that this kind of two-dimensional AD

interpolation of “first separating then synthesizing” is different from the usual bilinear

interpolation, but its effect is comparable to that of the latter.

Example 5.1 Use AD interpolation to do interpolating to function z=x
2
y

2
.

We take sampled-data points of z=x
2
y

2
, ((xi, yj), zij), as follows:

xi: 20, 18, 16, … , 2, 0, 2, … , 16, 18, 20.

yj: 20, 18, 16, … , 2, 0, 2, … , 16, 18, 20.

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

17

zij : xi
2
yj

2

and take evaluated points (x, y) as follows:

x: 20, 20, 20, 19.5, 17.8, -18,15.3, 12, 10.2, 10, 10, 0, 0, 10, 10, 5.6, 4.7, 3.4, 1.8,

2.3, 3.6, 1.2, 5.4, 15.6, 20, 20, 20, 18.3, 18.4, 17.5, 16.2, 14.5, 11.1, 5.4, 12.1, 8.5, 13.9,

7.5, 7.8, 9.8, 12.4, 13.5, 14.6, 17.5, 17.8.

 y: 20, 20, 20, 19.5, 17.8,5, 15.5, 2.5, 10.2, 10, 20, 0, 20, 20, 10, 15.3, 3.8,

13.4, 2.8, 1.9, 5.6, 10.2, 6.5, 5.6, 0, 10, 10, 10.4, 18.1, 16.3, 14.4, 12.3, 6.3, 15.8, 8.2,

15.6, 0.9, 1.6, 3.2, 4.6, 6.6, 2.8, 0.9, 18.6, 13.2.

Doing interpolation by using AD interpolation (programming with MATLAB), the

corresponding z-values obtained are as follows:

800.0000 800.0000 800.0000 762.0000 634.4000 350.0000 476.0000

 151.0000 208.8000 200.0000 500.0000 0 400.0000 500.0000

 200.0000 267.0000 37.8000 192.8000 12.4000 9.6000 45.6000

 106.8000 73.0000 276.0000 400.0000 500.0000 500.0000 444.2000

 667.0000 573.2000 470.8000 362.8000 164.4000 280.0000 214.2000

 317.0000 195.2000 60.2000 72.4000 118.4000 198.8000 191.8000

 215.8000 653.8000 492.4000

The interpolation effect is shown in Figure 5-2.

 Accuracy analysis:

maximum error 1.8300, minimum error 0, average error 0.9222

Example 5.2 Use AD interpolation to do interpolating to function z=
1

4
𝑥2 −

1

4
𝑦2.

We take sampled-data points, ((xi, yj), zij), as follows:

xi: 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5.

yj: 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5.

zij:
1

4
𝑥𝑖

2 −
1

4
𝑦𝑖

2.

and take evaluated points (x, y) as follows:

Figure 5-2 The effect drawing of scattered AD interpolation to function z=x
2
y

2

Where the grid curve is the graph of function z=x
2
y

2
, and the red circles indicate

the points obtained by AD interpolation.

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

18

x=-5, 4.9, 4.8, 4.7, 4.6, 4.5, … , 4.5, 4.6, 4.7, 4.8, 4.9, 5.

y=x.

Doing interpolation by using AD interpolation (programming with MATLAB, the

corresponding z-values obtained are omitted), the interpolation effect is shown in Figure 5-3.

Accuracy analysis:

maximum error 0.0625, minimum error 0, average error 0.0216

Example 5.3 Figure 5-4 below shows also an effect drawing of AD interpolation, the

sampled-data (are omitted) are taken from the classic peaks function in MATLAB.

 Accuracy analysis:

maximum error 0.3177, minimum error 0, average error 0.0224

Figure 5-3 The effect drawing of AD interpolation to function z=
1

4
𝑥2 −

1

4
𝑦2

Where the (a) is the functional graph before interpolating, and the (b) is the

functional graph after interpolating

Figure 5-4 An illustration of the effect of AD interpolation

Where (a) is the functional graph formed by sample data, and (b) is the functional graph

obtained by AD interpolation.

(a) (b)

(a) (b)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

19

5.2 Three-Dimensional AD Interpolation

Suppose some data points of function of three variables, u=f(x, y, z), ((xi, yj, zk), uijk),

(i={1,2,…,n}, j={1,2,…,m}, k={1,2,…,l}) are known, and the base points (xi, yj, zk) are

regularly distributed, that is, they satisfy ax=x1<x2< , … , <xn=bx , ay = y1<y2< , … , <ym=by

and az =z1<z2< , … , <zl=bz, and can also form a m×n×l “three-dimensional matrix” (as shown

in Figure 5-5), correspondingly, they form a Cartesian grid in the x-y-z space (as shown in

Figure 5-6). We consider the corresponding interpolation problem.

For the three-dimensional interpolation, we use still the technique similar to the

two-dimensional interpolation above. Specifically speaking, it is that take base points (x1, y1,

z1), … , (xn, ym, zl) as points of view, according to these base points and their approximation

domains to partition region U=[ax, bx][ay, by][az, bz] into (2n2) (2m2) (2l2) sub

regions as shown in Figure 5-6 as interpolation regions; then separate the interpolating

computation of evaluated point (x, y, z) with corresponding nearest base point (xi, yj, zk)

(i{1,2,…,n}, j{1,2,…,m}, k{1,2,…,l}) into the interpolating computation of x with xi, the

interpolating computation of y with yj, and the interpolating computation of z with zk, and get

the corresponding approximate values ux, uy, and uz, respectively; finally, synthesize ux, uy, and

uz into a value u as the interpolated value at point (x, y, z).

Figure5-5 A “three-dimensional matrix” formed by known base points, (xi, yj, zk)

(x1, y1, zl), (x2, y1, zl), … , (xn, y1, zl)

(x1, y2, zl), (x2, y2, zl), … , (xn, y2, zl)

 … … …

(x1, ym, zl), (x2, ym, zl), … , (xn, ym, zl) (x1, y1, z2), (x2, y1, z2), … , (xn, y1, z2)

(x1, y2, z2), (x2, y2, z2), … , (xn, y2, z2)

 … … …

(x1, ym, z2), (x2, ym, z2), … , (xn, ym, z2)

(x1, y1, z1), (x2, y1, z1), … , (xn, y1, z1)

(x1, y2, z1), (x2, y2, z1), … , (xn, y2, z1)

 … … …

(x1, ym, z1), (x2, ym, z1), … , (xn, ym, z1)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

20

There were 4 formulas separated as 2 pairs in the above two-dimensional interpolation,

for here three-dimensional interpolation we have 6 formulas separated as 3 pairs:

 u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖−1,𝑗𝑘

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑥𝑖𝑢 𝑖−1,𝑗𝑘 −𝑥𝑖−1𝑢 𝑖𝑗𝑘

𝑥𝑖−𝑥𝑖−1
, x[

𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖] (5-6)

u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖+1,𝑗𝑘

𝑥𝑖−𝑥𝑖+1
𝑥 +

𝑥𝑖𝑢 𝑖+1,𝑗𝑘 −𝑥𝑖+1𝑢 𝑖𝑗𝑘

𝑥𝑖−𝑥𝑖+1
, x[𝑥𝑖 ,

𝑥𝑖+𝑥𝑖+1

2
] (5-7)

 u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖,𝑗−1,𝑘

𝑦𝑗−𝑦𝑗−1
𝑦 +

𝑦𝑗𝑢 𝑖,𝑗−1,𝑘−𝑦𝑗−1𝑢 𝑖𝑗𝑘

𝑦𝑗−𝑦𝑗−1
, y[

𝑦𝑗 +𝑦𝑗−1

2
, 𝑦𝑗] (5-8)

u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖,𝑗+1,𝑘

𝑦𝑗−𝑦𝑗+1
𝑦 +

𝑦𝑗𝑢 𝑖,𝑗+1,𝑘−𝑦𝑗+1𝑢 𝑖𝑗𝑘

𝑦𝑗−𝑦𝑗+1
, y[𝑦𝑗 ,

𝑦𝑗 +𝑦𝑗+1

2
] (5-9)

 u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖𝑗 ,𝑘−1

𝑧𝑘−𝑧𝑘−1
𝑧 +

𝑧𝑘𝑢 𝑖𝑗 ,𝑘−1−𝑧𝑘−1𝑢 𝑖𝑗𝑘

𝑧𝑘−𝑧𝑘−1
, z[

𝑧𝑘+𝑧𝑘−1

2
, 𝑧𝑘] (5-10)

u=
𝑢 𝑖𝑗𝑘 −𝑢 𝑖𝑗 ,𝑘+1

𝑧𝑘−𝑧𝑘+1
𝑧 +

𝑧𝑘𝑢 𝑖𝑗 ,𝑘+1−𝑧𝑘+1𝑢 𝑖𝑗𝑘

𝑧𝑘−𝑧𝑘+1
, z[𝑧𝑘 ,

𝑧𝑘+𝑧𝑘+1

2
] (5-11)

where uijkf(xi, yj, zk).

Similar to two-dimensional AD interpolation, here for an evaluated point (x, y, z) U, we

need only choose a formula with respect to x, a formula with respect to y, and a formula with

respect to z. As to which 3 formulas will be used, it should be determined by the subintervals

that x, y and z lie respectively. For example, if x[
𝑥𝑖+𝑥𝑖−1

2
, 𝑥𝑖], y[𝑦𝑗 ,

𝑦𝑗 +𝑦𝑗+1

2
], and

z[
𝑧𝑘+𝑧𝑘−1

2
, 𝑧𝑘], then Formulas (5-6), (5-9), and (5-10) should be respectively used. By

Formula (3-12) in Section 3.2, here the formula that synthesizes ux, uy, and uz is

Figure 5-6 An illustration of interpolation regions partitioned by base points and their

approximation domains in three-dimensional AD interpolation

Where the regions enclosed by solid lines are the approximation domains of base points (xi, yj, zk),

and the dotted lines further divide an approximation domain into two, four, or eight parts

x

y

z z3

𝑧2+𝑧3

2

z2

𝑧1+𝑧2

2

z1

𝑦2 + 𝑦3

2

𝑦1 + 𝑦2

2

y3

y2

y1

x1
𝑥1+𝑥2

2
 x2

𝑥2+𝑥3

2
 x3

𝑥3+𝑥4

2 𝑥4

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

21

u= ux+uy+uz 2uijk (5-12)

Example 5.4 Use AD interpolation to do interpolating to function of three variables, u=

x
2
y

2
z

2
.

We take sampled-data points, ((xi, yj, zk), uijk), as follows:

xi: 3, 2.5, 2.0, … , 0.5, 0, 0.5, … , 2.0, 2.5, 3.

yj: 4, 3.5, 3.0,…, 0.5, 0, 0.5,…, 3.0 , 3.5, 4.

zk : 4, 3.5, 3.0,…, 0.5, 0, 0.5,…, 3.0 , 3.5, 4.

uijk: u= xi
2
yj

2
zk

2

and take evaluated points, (x, y, z) as follows:

x: 3, 2.75, 2.50, … , 0.75, 0, 0.25, … , 2.50, 2.75, 3.

y: 4, 3.80, 3.60, … , 0.80, 0, 0.20, … , 3.60 , 3.80, 4.

z : 4, 3. 75, 3.50, … , 0.75, 0, 0. 25, … , 3.50, 3.75, 4.

Doing AD interpolation (the corresponding u-values obtained are omitted), the interpolation

effect (slice chart) is shown in Figure 5-7.

 Accuracy analysis:

maximum error 0.1850, minimum error 0, average error 0.0993

5.3 N-Dimensional AD Interpolation

Generalizing the above two-dimensional and three-dimensional AD interpolations, we obtain

a general n-dimensional AD interpolation method.

Suppose some data points of function of n variables, y= f(x1, x2, … , xn),

((𝑥1i
, 𝑥2j

, … , 𝑥𝑛𝑘
), 𝑦𝑖𝑗 …𝑘) (i=1,2,…,r; j=1,2,…,s ; k=1,2,…,t) are known, and the base points

Figure 5-7 The effect drawing (slice chart) of AD interpolation to function of three

variables, u= x
2
y

2
z

2

Where the graph on the left is the graph before interpolating, and the graph on the right is

the graph after interpolating

(a) (b)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

22

(𝑥1𝑖
, 𝑥2𝑗

, … , 𝑥𝑛𝑘
) are regularly distributed, then the procedure of n-dimensional AD

interpolation is:

(1) Partition the n-dimensional interpolation space U=[a1, b1]×[a2, b2]×…×[an,

bn]=[𝑥11
, 𝑥1𝑟

]×[𝑥21
, 𝑥2𝑠

]×…×[𝑥𝑛1
, 𝑥𝑛𝑡

] according to the approximation domains of all base

points xi,j,…,k=(𝑥1𝑖
, 𝑥2𝑗

, … , 𝑥𝑛𝑘
) (i=1,2,…,r; j=1,2,…,s ; k=1,2,…,t);

(2) For evaluated point x=(x1, x2, … , xn)U, look for the approximation domain it lies

(Which is equivalent to seek its nearest base point xi,j,…,k (i{1,2,…,r}, j{1,2,…,s},

k{1,2,…,t}));

(3) Separate the n-dimensional interpolating computation of point x with base point

xi,j,…,k into n one-dimensional interpolating computations of x1 with 𝑥1𝑖
, x2 with 𝑥2𝑗

, … , and

xn with 𝑥𝑛𝑘
, and do interpolating computations with the corresponding one-dimensional

interpolation formulas, respectively;

(4) Synthesize the n got approximate values 𝑦𝑥1
, 𝑦𝑥2

, … , 𝑦𝑥𝑛
 into one value y as the

interpolated value at point x.

 N-dimensional AD interpolation has n pairs of interpolating formulas as follows:

 y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖−1,𝑗 ,,,𝑘

𝑥1𝑖
−𝑥1𝑖−1

𝑥1 +
𝑥1𝑖

𝑦𝑖−1,𝑗 ,,,𝑘−𝑥1𝑖−1
𝑦𝑖𝑗 …𝑘

𝑥1𝑖
−𝑥1𝑖−1

, 𝑥1[
𝑥1𝑖

+𝑥1𝑖−1

2
, 𝑥1𝑖

] (5-13)

y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖+1,𝑗 ,,,𝑘

𝑥1𝑖
−𝑥1𝑖+1

𝑥1 +
𝑥1𝑖

𝑦𝑖+1,𝑗 ,,,𝑘−𝑥1𝑖+1
𝑦𝑖𝑗 …𝑘

𝑥1𝑖
−𝑥1𝑖+1

, 𝑥1[𝑥1𝑖
,

𝑥1𝑖
+𝑥1𝑖+1

2
] (5-14)

 y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖,𝑗−1,,,𝑘

𝑥2𝑖
−𝑥2𝑖−1

𝑥2 +
𝑥2𝑖

𝑦𝑖,𝑗−1,,,𝑘−𝑥2𝑖−1
𝑦𝑖𝑗 …𝑘

𝑥2𝑖
−𝑥2𝑖−1

, 𝑥2[
𝑥2𝑖

+𝑥2𝑖−1

2
, 𝑥2𝑖

] (5-15)

y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖,𝑗+1,,,𝑘

𝑥2𝑖
−𝑥2𝑖+1

𝑥2 +
𝑥2𝑖

𝑦𝑖,𝑗+1,,,𝑘−𝑥2𝑖+1
𝑦𝑖𝑗 …𝑘

𝑥2𝑖
−𝑥2𝑖+1

, 𝑥2[𝑥2𝑖
,

𝑥2𝑖
+𝑥2𝑖+1

2
] (5-16)

… … …

 y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖,𝑗 ,,,𝑘−1

𝑥𝑛𝑖
−𝑥𝑛𝑖−1

𝑥𝑛 +
𝑥𝑛𝑖

𝑦𝑖,𝑗 ,,,𝑘−1−𝑥𝑛𝑖−1
𝑦𝑖𝑗 …𝑘

𝑥n𝑖
−𝑥𝑛𝑖−1

, 𝑥𝑛[
𝑥𝑛𝑖

+𝑥𝑛𝑖−1

2
, 𝑥1𝑖

] (5-17)

y=
𝑦𝑖𝑗 …𝑘−𝑦𝑖,𝑗 ,,,𝑘+1

𝑥𝑛𝑖
−𝑥𝑛𝑖+1

𝑥𝑛 +
𝑥𝑛𝑖

𝑦𝑖,𝑗 ,,,𝑘+1−𝑥𝑛𝑖+1
𝑦𝑖𝑗 …𝑘

𝑥𝑛𝑖
−𝑥𝑛𝑖+1

, 𝑥𝑛[𝑥𝑛 𝑖
,

𝑥𝑛𝑖
+𝑥𝑛𝑖+1

2
] (5-18)

where 𝑦𝑖𝑗 …𝑘 f(𝑥1𝑖
, 𝑥2𝑗

, … , 𝑥𝑛𝑘
).

And the synthesizing formula of the final interpolated value is

y= kij

n

i

x yny
i ...

1

)1(


 (5-19)

Here 𝑦𝑥𝑖
 are the approximate values that got by one-dimensional AD interpolation

computations of 𝑥𝑖 (i=1,2,…,n).

The Formula (5-19) is the Sum-Times-Difference formulas in AD interpolation.

It can be seen that in theory the dimensionality n of n-dimensional AD interpolation has

no an upper limit. In this way, using the technique of “first separating then synthesizing” and

the Sum-Times-Difference formula, we can also realize the high-dimensional or even

super-high-dimensional AD interpolations with more than 3 dimensions. In fact, a program

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

23

for AD interpolation with more than 10 dimensions has been completed by the author, and the

dimension can be easily increased (due to the space limit, the relevant content will be

introduced in another article).

Actually, if we substitute the interpolation formulas into the Sum-Times-Difference

formula, it is not difficult to see that the Sum-Times-Difference formula is actually a linear

combination of all coordinate components of point (x1, x2, … , xn). For example, we substitute

two-dimensional interpolating formulas z=
𝑧𝑖𝑗 −𝑧𝑖−1,𝑗

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑥𝑖𝑧𝑖−1,𝑗−𝑥𝑖−1𝑧𝑖𝑗

𝑥𝑖−𝑥𝑖−1
 and z=

𝑧𝑖𝑗 −𝑧𝑖,𝑗−1

𝑦𝑗−𝑦𝑗−1
𝑦 +

𝑦𝑗𝑧𝑖,𝑗−1−𝑦𝑗−1𝑧𝑖𝑗

𝑦𝑗−𝑦𝑗−1
 into corresponding Sum-Times-Difference formula z= zx+zy zij, then it follows

that

z=
𝑧𝑖𝑗 −𝑧𝑖−1,𝑗

𝑥𝑖−𝑥𝑖−1
𝑥 +

𝑧𝑖𝑗 −𝑧𝑖,𝑗−1

𝑦𝑗−𝑦𝑗−1
𝑦 + (

𝑥𝑖𝑧𝑖−1,𝑗−𝑥𝑖−1𝑧𝑖𝑗

𝑥𝑖−𝑥𝑖−1
+

𝑦𝑗𝑧𝑖,𝑗−1−𝑦𝑗−1𝑧𝑖𝑗

𝑦𝑗−𝑦𝑗−1
zij)

Therefore, Sum-Times-Difference formula can also be said to be the interpolation formula of

multidimensional AD interpolation.

Although AD interpolation is also a local linear interpolation, it is derived on the basis of

approximate evaluation of functions based on the approximation-degree, so the base points

involved in interpolation are related to the position of the evaluated point xU relative to its

nearest base point xi,j,…,k. It can be seen that n-dimensional AD interpolation involves a total

of 1+n base points, and when dimensionality is added by 1, the number of the base point

involved will be added by only 1 (see Figures 3-7, 3-8 and 5-1, 5-5). Because the point x is

only approximate to the base point xi,j,…,k, so the n approximate values,𝑦𝑥1
, 𝑦𝑥2

, … , 𝑦𝑥𝑛
,

obtained from one-dimensional interpolating computations got from separating are most

affected by base point xi,j,…,k, and final interpolated value y is also most affected by xi,j,…,k. In

other words, AD interpolation is dominated by the nearest base point xi,j,…,k of evaluated point

x.

6 Accuracy and Efficiency about AD Interpolation

6.1 The Accuracy

It can be seen from the one-dimensional interpolation formulas and the

Sum-Times-Difference formula of multi-dimensional interpolation that AD interpolation is

essentially a piecewise (block) linear interpolation. Therefore, the accuracy of AD

interpolation should be on the level of linear interpolation. In fact, the data experiments show

that: the accuracy of 1, 2, 3-D AD interpolations are about the same as the traditional linear

interpolation, especially for the quadratic functions (such as previous examples 1, 2, 3), the

accuracy of the two is exactly the same. In addition, we find that to the interpolated function

y=f(x1, x2, … , xn) which is monotonous on each interpolation subinterval, in theory, the

maximum error of AD interpolation is

E= 𝑓(
𝑥1𝑖

+𝑥1𝑖+1

2
,
𝑥2𝑖

+𝑥2𝑖+1

2
, … ,

𝑥𝑛𝑖
+𝑥𝑛𝑖+1

2
)  𝑓 (

𝑥1𝑖
+𝑥1𝑖+1

2
,
𝑥2𝑖

+𝑥2𝑖+1

2
, … ,

𝑥𝑛 𝑖
+𝑥𝑛𝑖+1

2
) 

Here, 𝑓(𝒙) and 𝑓 (𝒙) are respectively the interpolated value and desired value at point

x=(x1, x2, … , xn).

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

24

Actually, from the principle of AD interpolation, it is not difficult to see that the accuracy

of AD interpolation is related to two factors: one is the size of the approximation domain of

correlative base point and the other is the approximation-degree of the evaluated point x to the

corresponding nearest base point. Obviously, the narrower the approximation domain

(including the relative approximation domain and the absolute approximation domain) is, the

higher the interpolation accuracy is; And when an approximation domain has be determined,

the higher the approximation-degree of the point x to the corresponding base point is, the

higher the accuracy of the corresponding interpolated value is.

Thus, for the regularly distributed base points, as long as there are enough data points,

that is, enough samples, the required any accuracy can be achieved by using AD interpolation.

6.2 The Efficiency

Viewed from the principle, the difference between AD interpolation and traditional linear

interpolation is mainly in multidimensional interpolations. In fact, in multidimensional AD

interpolation, by using a technique of "first separating and then synthesizing", an

n-dimensional AD interpolation computation is separated into n one-dimensional AD

interpolation computations to be done respectively; then the got results are synthesized into a

value by Sum-Times-Difference formula as the result value of the n-dimensional interpolation.

In this way, one-time n-dimensional AD interpolation computation becomes into n-times

one-dimensional AD interpolation computations and one-time synthesizing computation.

From the Sum-Times-Difference formula, all of multidimensional AD interpolations have

only two layers of computation: one-dimensional AD interpolation computations and

synthesizing computation (as shown in Figure 6-1 (a)), and when dimensionality is added by

1, only one-time one-dimensional AD interpolation computation and one-time addition

operation are added in the corresponding AD interpolation (as shown in Figure 6-1 (b)). That

is to say, the two-layer computing structure of AD interpolation is always unchanged, but the

number of terms of computation in lower layer will increase with the increase of data

dimension. In this way, the times of the formula (including interpolation formulas and

Sum-Times-Difference formula) computation in n(n>1)-dimensional AD interpolation is n+1.

Starting from the two dimensions, the times of formula computation in the AD interpolation

are in order: 3, 4, 5, …, i.e., a sequence of equal difference numbers with a difference of 1,

and the general term is: n+1. We denote the times of the formula computation in

n(n>1)-dimensional AD interpolation as Nn, and the recurrence formula is: Nn+1= Nn+1. From

this we see that the computation load of multidimensional AD interpolation is much smaller

than that of traditional multidimensional linear interpolation.

Figure 6-1 The hierarchical structure of formula computation in

multidimensional AD interpolation

Where I𝑥𝑖
 denote the one-dimensional AD interpolating computations of

variable xi (i=1,2,…,n,n+1)

(a)

…

I𝑥1
 I𝑥2

… I𝑥𝑛

I𝑥n

, , 

…

I𝑥1
 I𝑥2

… I𝑥𝑛

, , 

I𝑥𝑛+1

(b)

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

25

In addition, since n one-dimensional AD interpolation computations got from separation

are independent of each other, so the parallel computation can be used. Thus, the efficiency of

n-dimensional AD interpolation is almost equal to that of one-dimensional AD interpolation

From the above mentioned, we can see that the high efficiency of AD interpolation is

obvious, and the higher the dimension is, the higher the efficiency is.

7 Summary and Prospect

Inspired by the approximate evaluation method of flexible linguistic functions in reference [1],

in this paper we introduce the measure of approximate-degree and the concept of

approximate-degree function between numerical values, and according to "approximation

axiom" and by computing approximation-degree, transferring approximation-degree,

evaluating inverse function, and choosing approximate value, we realize the approximate

evaluation of a numerical function; Especially, for multivariate functions, in the sense of

"strict approximation", we use the technique of “first separating then synthesizing” and find

and present a formula of "Sum-Times-Difference", and achieve corresponding approximate

evaluation more skillfully. On this basis, we further derive a set of interpolation formulas for

regularly distributed base points, thus an interpolation method based on approximation-degree,

approximation-degree-based interpolation, i.e., AD interpolation, has be developed; and then,

we extend one-dimensional AD interpolation to high-dimensional interpolation. As a test of

AD interpolation method, we apply AD interpolation to the actual functions and obtain

satisfactory results: the one-dimensional AD interpolation has the effect of “reaching the same

goal from different routes” with usual piecewise linear interpolation, the two-dimensional and

three-dimensional AD interpolations are comparable to the usual bilinear and trilinear

interpolations; and then, the high-dimensional AD interpolations with more than 3 dimensions

also have passed the data test.

Actually, AD interpolation is also a kind of linear interpolation in essence, its accuracy

is about the same as that of traditional (piecewise) linear interpolation, but its principle is

different from that of the latter. One-dimensional AD interpolation is done directly by using

corresponding interpolation formulas; n(n>1)-dimensional AD interpolation is firstly

separated into n one-dimensional AD interpolation computations which can be processed in

parallel to do respectively, and then the results got are synthesized by Sum-Times-Difference

formula into a value as the result value of the n-dimensional interpolation. AD interpolation is

dominated by a nearest base point and assisted by adjacent base point(s) of the nearest base

point, n-dimensional AD interpolation computation involves 1+n base points, which means

that when dimensionality is added by 1, only one correlative base point will be added. The

n-dimensional AD interpolation has two layers of computation: first, parallel one-dimensional

AD interpolation computations, then, synthesizing computation, and when dimensionality is

added by 1, only one term of one-dimensional AD interpolation computation and one-time

addition operation are added. In this way, compared with the traditional linear interpolation,

the computation load of the AD interpolation is much smaller, if the parallel processing is also

used, the efficiency of n-dimensional AD interpolation is almost the same as that of the

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

26

one-dimensional AD interpolation. In addition, the dimensionality of the multi-dimensional

AD interpolation is theoretically unlimited (limited only by the associated computational

resources).

In a word, AD interpolation has the advantages of novel idea, unique method, simple

computation, adjustable accuracy, high efficiency, and unlimited dimension. This opens up a

new way for data fitting and function approximation, and especially, it starts a feasible and

convenient approach and provides an effective method for high-dimensional and

super-high-dimensional interpolations.

This paper expounds the basic principle of AD interpolation. On the basis, we can

further carry out the following work:

 Applying AD interpolation to practical high-dimensional and super-high dimensional

interpolation problems

 AD interpolation with irregular distributed base points

 AD interpolation for vector-valued functions

 AD interpolation with derivative (partial derivative and directional derivative)

 Using AD interpolation to realize a function approximator

It can be seen that the approximator using AD interpolation is always interpretable, and

won’t occur “the dilemma between precision and interpretability”
[7]

 encountered by the

function approximator based on fuzzy technology.

 Introducing AD interpolation into machine learning to realize a new instance-based

learning method——AD interpolation learning

Actually, for these further topics, the author has done some research and obtained some

preliminary results. Due to space constraints, we will discuss them separately.

References

[1] Shiyou Lian, 2016. Principles of Imprecise-Information Processing: A New Theoretical

and Technological System, Springer Nature.

[2] David Kincaid and Ward Cheney, 2002. Numerical Analysis: Mathematics of Scientific

Computing (Third Edition), Thomson Learning.

[3] Tom M. Mitchell, 1997. Machine Learning, MecGraw-Hill Companies, Inc.

[4] Ethem Alpaydin, 2014. Introduction to Machine Learning (Third Edition), Massachusetts

Institute of Technology, MIT Press

[5] Shiyou Lian, 2016. Correspondence between Flexible Sets, and Flexible Linguistic

Functions, in: Shiyou Lian, Principles of Imprecise-Information Processing: A New

Theoretical and Technological System, Springer Nature, pp. 205228.

[6] Shiyou Lian, 2016. Approximate Evaluation of Flexible Linguistic Functions, in: Shiyou

Lian, Principles of Imprecise-Information Processing: A New Theoretical and

Technological System, Springer Nature, pp. 393417.

[7] Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, 1997. Neuro-Fuzzy and Soft

Computing (Prentice Hall, Upper Saddle River, NJ), pp. 342~245, 382~385.

ch
in

aX
iv

:2
02

00
1.

00
04

5v
1

