All Results

Higgs-pair production and decay in simplest little Higgs model

Han, Xiao-Fang; Wang, Lei; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

In the framework of the simplest little Higgs model (SLHM), we study the production of a pair of neutral CP-even Higgs bosons at the LHC. First, we examine the production rate and find that it can be significantly larger than the SM prediction. Then we investigate the decays of the Higgs-pair and find that for a low Higgs mass their dominant decay mode is hh -> eta eta eta eta (eta is a CP-odd scalar) while hh -> b (b) over bar eta eta and hh -> eta eta WW may also have sizable ratios. Finally, we comparatively study the rates of pp -> hh -> b (b) over bar tau(+)tau(-), pp -> hh -> b (b) over bar gamma gamma, and pp -> hh -> WWWW in the SLHM and the littlest Higgs models (LHT). We find that for a light Higgs, compared with the SM predictions, all the three rates can be sizably enhanced in the LHT but severely suppressed in the SLHM; while for an intermediately heavy Higgs, both the LHT and SLHM can enhance sizably the SM predictions. (C) 2009 Elsevier B.V. All rights reserved. |

submitted time
2016-05-15
Hits*1738*，
Downloads*1003*，
Comment
*0*

Subjects: Physics >> The Physics of Elementary Particles and Fields

The left-right twin Higgs model predicts a light stable scalar (S) over cap, which is a candidate for WIMP dark matter. We study its scattering on nucleon and find that the cross section is below the CDMS II upper bound but can reach the SuperCDMS sensitivity. Then we study the Higgs phenomenology by paying special attention to the decay h -> (S) over cap(S) over cap which is strongly correlated with the dark matter scattering on nucleon. We find that such an invisible decay can be sizable, which can severely suppress the conventional decay modes like h -> VV(V = W, Z) and h -> b (b) over bar. On the other hand, compared to the SM prediction, the rates of Higgs boson productions at the LHC via gluon-gluon fusion, weak boson fusion or in association with top quark pairs are all reduced significantly, e. g., the gluon-gluon fusion channel can be suppressed by about 30%. |

Subjects: Physics >> The Physics of Elementary Particles and Fields

We study the process gamma gamma -> h -> b (b) over bar at ILC as a probe of different little Higgs models, including the simplest little Higgs model (SLH), the littlest Higgs model (LH), and two types of littlest Higgs models with T-parity (LHT-I, LHT-II). Compared with the Standard Model (SM) prediction, the production rate is found to be sizably altered in these little Higgs models and, more interestingly, different models give different predictions. We find that the production rate can be possibly enhanced only in the LHT-II for some part of the parameter space, while in all other cases the rate is suppressed. The suppression can be 10% in the LH and as much as 60% in both the SLH and the LHT-I/LHT-II. The severe suppression in the SLH happens for a large tan beta and a small m(h), in which the new decay mode h -> eta eta (eta is a light pseudo-scalar) is dominant; while for the LHT-I/LHT-II the large suppression occurs when integral and m(h) are both small so that the new decay mode h -> A(H)A(H) is dominant. Therefore, the precision measurement of such a production process at the ILC will allow for a test of these models and even distinguish between different scenarios. |

LHC diphoton Higgs signal predicted by little Higgs models

Wang, Lei; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the diphoton signal pp -> h -> gamma gamma. In this work, we perform a comparative study for this signal in some typical little Higgs models, namely, the littlest Higgs model, two littlest Higgs models with T-parity (named LHT-I and LHT-II), and the simplest little Higgs models. We find that compared with the standard model prediction, the diphoton signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (<= 10%) in the littlest Higgs model but can be quite severe (similar or equal to 90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the diphoton channel at the LHC will be more difficult than discovering the standard model Higgs boson. |

Top quark forward-backward asymmetry and charge asymmetry in the left-right twin Higgs model

Wang, Lei; Wu, Lei; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

In order to explain the Tevatron anomaly of the top quark forward-backward asymmetry A(FB)(t) in the left-right twin Higgs model, we choose to give up the lightest neutral particle of (h) over cap field as a stable dark matter candidate. Then a new Yukawa interaction for (h) over cap is allowed, which can be free from the constraint of same-sign top pair production and contribute sizably to A(FB)(t). Considering the constraints from the production rates of the top pair (t (t) over bar), the top decay rates, and t (t) over bar invariant mass distribution, we find that this model with such new Yukawa interaction can explain A(FB)(t) measured at the Tevatron while satisfying the charge asymmetry A(C)(t) measured at the LHC. Moreover, this model predicts a strong correlation between A(C)(t) at the LHC and A(FB)(t) at the Tevatron, i.e., A(C)(t) increases as A(FB)(t) increases. |

Little Higgs theory confronted with the LHC Higgs data

Han, Xiao-Fang; Wang, Lei; Yang, Jin Min; Zhu, JingyaSubjects: Physics >> The Physics of Elementary Particles and Fields

We confront the little Higgs theory with the LHC Higgs search data (up to 17 fb(-1) of the combined 7 and 8 TeV run). Considering some typical models, namely, the littlest Higgs model, the littlest Higgs model with T parity (LHT-A and LHT-B), and the simplest little Higgs model, we scan over the parameter space in the region allowed by current experiments. We find that in these models the inclusive and exclusive (via gluon-gluon fusion) diphoton and ZZ* signal rates of the Higgs boson are always suppressed and approach the standard model predictions for a large-scale f. Thus, the ZZ* signal rate is within the 1 sigma range of the experimental data while the inclusive diphoton signal rate is always outside the 2 sigma range. Especially, in the LHT-A the diphoton signal rate is outside the 3 sigma range of the experimental data for f < 800 GeV. We also perform a global chi(2) fit to the available LHC and Tevatron Higgs data, and find that these models provide no better global fit to the whole data set (only for some special channels a better fit can be obtained, especially in the LHT-B). DOI: 10.1103/PhysRevD.87.055004 |

Subjects: Physics >> The Physics of Elementary Particles and Fields

In this paper, we interpret the 750 GeV diphoton excess in the Zee-Babu extension of the two-Higgs-doublet model by introducing a top partner (T)/bottom partner (B). In the alignment limit, the 750 GeV resonance is identified as the heavy CP-even Higgs boson (H), which can be sizably produced via the QCD process pp -> T (T) over bar or pp -> B (B) over bar followed by the decay T -> Ht or B -> Hb. The diphoton decay rate of His greatly enhanced by the charged singlet scalars predicted in the Zee-Babu extension and the total width of H can be as large as 7 GeV. Under the current LHC constraints, we scan the parameter space and find that such an extension can account for the observed diphoton excess. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. |

[1 Pages/ 7 Totals]