All Results

Higgs-pair production and decay in simplest little Higgs model

Han, Xiao-Fang; Wang, Lei; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

In the framework of the simplest little Higgs model (SLHM), we study the production of a pair of neutral CP-even Higgs bosons at the LHC. First, we examine the production rate and find that it can be significantly larger than the SM prediction. Then we investigate the decays of the Higgs-pair and find that for a low Higgs mass their dominant decay mode is hh -> eta eta eta eta (eta is a CP-odd scalar) while hh -> b (b) over bar eta eta and hh -> eta eta WW may also have sizable ratios. Finally, we comparatively study the rates of pp -> hh -> b (b) over bar tau(+)tau(-), pp -> hh -> b (b) over bar gamma gamma, and pp -> hh -> WWWW in the SLHM and the littlest Higgs models (LHT). We find that for a light Higgs, compared with the SM predictions, all the three rates can be sizably enhanced in the LHT but severely suppressed in the SLHM; while for an intermediately heavy Higgs, both the LHT and SLHM can enhance sizably the SM predictions. (C) 2009 Elsevier B.V. All rights reserved. |

submitted time
2016-05-15
Hits*1738*，
Downloads*1003*，
Comment
*0*

Subjects: Physics >> The Physics of Elementary Particles and Fields

The left-right twin Higgs model predicts a light stable scalar (S) over cap, which is a candidate for WIMP dark matter. We study its scattering on nucleon and find that the cross section is below the CDMS II upper bound but can reach the SuperCDMS sensitivity. Then we study the Higgs phenomenology by paying special attention to the decay h -> (S) over cap(S) over cap which is strongly correlated with the dark matter scattering on nucleon. We find that such an invisible decay can be sizable, which can severely suppress the conventional decay modes like h -> VV(V = W, Z) and h -> b (b) over bar. On the other hand, compared to the SM prediction, the rates of Higgs boson productions at the LHC via gluon-gluon fusion, weak boson fusion or in association with top quark pairs are all reduced significantly, e. g., the gluon-gluon fusion channel can be suppressed by about 30%. |

Subjects: Physics >> The Physics of Elementary Particles and Fields

We study the process gamma gamma -> h -> b (b) over bar at ILC as a probe of different little Higgs models, including the simplest little Higgs model (SLH), the littlest Higgs model (LH), and two types of littlest Higgs models with T-parity (LHT-I, LHT-II). Compared with the Standard Model (SM) prediction, the production rate is found to be sizably altered in these little Higgs models and, more interestingly, different models give different predictions. We find that the production rate can be possibly enhanced only in the LHT-II for some part of the parameter space, while in all other cases the rate is suppressed. The suppression can be 10% in the LH and as much as 60% in both the SLH and the LHT-I/LHT-II. The severe suppression in the SLH happens for a large tan beta and a small m(h), in which the new decay mode h -> eta eta (eta is a light pseudo-scalar) is dominant; while for the LHT-I/LHT-II the large suppression occurs when integral and m(h) are both small so that the new decay mode h -> A(H)A(H) is dominant. Therefore, the precision measurement of such a production process at the ILC will allow for a test of these models and even distinguish between different scenarios. |

Subjects: Physics >> The Physics of Elementary Particles and Fields

As discussed recently by Hooper and Tait, the singlino-like dark matter in the Minimal Supersymmetric Standard Model (MSSM) extended by a singlet Higgs superfield can give a perfect explanation for both the relic density and the Pamela result through the Sommerfeld-enhanced annihilation into singlet Higgs bosons (a or h followed by h -> aa) with a being light enough to decay dominantly to muons or electrons. In this work we analyze the parameter space required by such a dark matter explanation and also consider the constraints from the LEP experiments. We find that although the light singlet Higgs bosons have small mixings with the Higgs doublets in the allowed parameter space, their couplings with the SM-like Higgs boson h(SM) (the lightest doublet-dominant Higgs boson) can be enhanced by the soft parameter A(kappa) and, in order to meet the stringent LEP constraints, the h(SM) tends to decay into the singlet Higgs pairs a a or hh instead of b (b) over bar. So the h(SM) produced at the LHC will give a multi-muon signal, h(SM) -> aa -> 4 mu or h(SM) -> hh -> 4a -> 8 mu. |

SUSY dark matter in light of CDMS II results: a comparative study for different models

Cao, Junjie; Hikasa, Ken-ichi; Wang, Wenyu; Yang, Jin Min; Yu, Li-XinSubjects: Physics >> The Physics of Elementary Particles and Fields

We perform a comparative study of the neutralino dark matter scattering on nucleon in three popular supersymmetric models: the minimal (MSSM), the next-to-minimal (NMSSM) and the nearly minimal (nMSSM). First, we give the predictions of the elastic cross section by scanning over the parameter space allowed by various direct and indirect constraints, which are from the measurement of the cosmic dark matter relic density, the collider search for Higgs boson and sparticles, the precision electroweak measurements and the muon anomalous magnetic moment. Then we demonstrate the property of the allowed parameter space with/without the new limits from CDMS II. We obtain the following observations: (i) For each model the new CDMS limits can exclude a large part of the parameter space allowed by current collider constraints; (ii) The property of the allowed parameter space is similar for MSSM and NMSSM, but quite different for nMSSM; (iii) For each model the future SuperCDMS can cover most of the allowed parameter space given that all soft breaking parameters are below 1 TeV. |

submitted time
2016-05-15
Hits*1820*，
Downloads*1022*，
Comment
*0*

Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models

Cao, Junjie; Heng, Zhaoxia; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

Various new physics models predict a light CP-odd Higgs boson (labeled as a) and open up new decay modes for Z-boson, such as Z -> (f) over bar fa, Z -> a gamma and Z -> aaa, which could be explored at the GigaZ option of the ILC. In this work we investigate these rare decays in several new physics models, namely the type-II two Higgs doublet model (type-II 2HDM), the lepton-specific two Higgs doublet model (L2HDM), the nearly minimal supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric standard model (NMSSM). We find that in the parameter space allowed by current experiments, the branching ratios can reach 10(-4) for Z -> (f) over bar fa (f = b,tau), 10(-9) for Z -> a gamma and 10(-3) for Z -> aaa, which implies that the decays Z -> (f) over bar fa and Z -> aaa may be accessible at the GigaZ option. Moreover, since different models predict different patterns of the branching ratios, the measurement of these rare decays at the GigaZ may be utilized to distinguish the models |

submitted time
2016-05-14
Hits*2198*，
Downloads*1054*，
Comment
*0*

Subjects: Physics >> The Physics of Elementary Particles and Fields

Extensions of the standard model often predict new chiral interactions for top quarks, which will contribute to top quark spin correlation and polarization in t (t) over bar production at the LHC. In this work, under the constraints from the current Tevatron measurements, a comparative study of the spin correlation and polarization is performed in three new physics models: the minimal supersymmetric model without R-parity, the third-generation enhanced left-right model, and the axigluon model. We find that the polarization asymmetry may be enhanced to the accessible level in all these models, while the correction to the spin correlation may be detectable in the axigluon model and the minimal supersymmetric model without R-parity with lambda '' couplings. |

submitted time
2016-05-14
Hits*1804*，
Downloads*1041*，
Comment
*0*

Di-photon Higgs signal at the LHC: A comparative study in different supersymmetric models

Cao, Junjie; Heng, Zhaoxia; Liu, Tao; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

As the most important discovery channel for a light Higgs boson at the LHC the di-photon signal gg --> h --> gamma gamma is sensitive to underlying physics. In this work we investigate such a signal in a comparative way by considering three different supersymmetric models, namely the minimal supersymmetric standard model (MSSM), the next-to-minimal supersymmetric standard model (NMSSM) and the nearly minimal supersymmetric standard model (nMSSM). Under the current collider and cosmological constraints we scan over the parameter space and obtain the following observation in the allowed parameter space: (i) In the nMSSM the signal rate is always suppressed; (ii) In the MSSM the signal rate is suppressed in most cases, but in a tiny corner of the parameter space it can be enhanced (maximally by a factor of 2); (iii) In the NMSSM the signal rate can be enhanced or suppressed depending on the parameter space, and the enhancement factor can be as large as 7. (C) 2011 Elsevier B.V. All rights reserved. |

submitted time
2016-05-14
Hits*1830*，
Downloads*1014*，
Comment
*0*

LHC diphoton Higgs signal predicted by little Higgs models

Wang, Lei; Yang, Jin MinSubjects: Physics >> The Physics of Elementary Particles and Fields

Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the diphoton signal pp -> h -> gamma gamma. In this work, we perform a comparative study for this signal in some typical little Higgs models, namely, the littlest Higgs model, two littlest Higgs models with T-parity (named LHT-I and LHT-II), and the simplest little Higgs models. We find that compared with the standard model prediction, the diphoton signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (<= 10%) in the littlest Higgs model but can be quite severe (similar or equal to 90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the diphoton channel at the LHC will be more difficult than discovering the standard model Higgs boson. |

[1 Pages/ 9 Totals]