Current Location:home > Browse

1. chinaXiv:202009.00063 [pdf]

基于深度残差反投影注意力网络的图像超分辨率

胡高鹏; 陈子鎏; 王晓明; 张开放; 黄增喜; 杜亚军
Subjects: Computer Science >> Integration Theory of Computer Science

针对多数单帧图像超分辨率(single image super-resolution,SISR)重建方法存在的特征信息发掘不充分、特征图各通道之间的相互依赖关系难以确定以及重建高分辨率(high resolution,HR)图像时存在重构误差等问题,提出了基于深度残差反投影注意力网络的图像超分辨率(SR)算法。即利用残差学习的思想缓解训练难度和充分发掘图像的特征信息,并使用反投影学习机制学习高低分辨图像之间的相互依赖关系,此外引入了注意力机制动态分配各特征图以不同的注意力资源从而发掘更多的高频信息和学习特征图各通道之间的依赖关系。实验结果表明了所提方法相比于多数单帧图像超分辨率方法,不仅在客观指标方面得到了显著的提升,而且重建的预测图像也具有更加丰富的纹理信息。

submitted time 2020-09-28 From cooperative journals:《计算机应用研究》 Hits10243Downloads1177 Comment 0

2. chinaXiv:201805.00440 [pdf]

改进的单幅图像的自学习超分辨率重建方法

王晓明; 黄凤; 刘少鹏; 徐涛
Subjects: Computer Science >> Integration Theory of Computer Science

针对传统超分辨率重建方法稀疏表示依赖大训练样本字典的局限性问题,基于l?范数的弱稀疏性特点,提出一种改进的单幅图像自学习超分辨率重建方法。首先,通过自学习建立非金字塔阶梯式训练图像集;然后,采用自定义的方法分别提取训练集中低分辨率和相应高分辨率图像特征块及特征像素值;最后,结合l?范数的协作表示(collaborative representation,CR)理论和支持向量回归(support vector regression,SVR)技术学习多层超分辨率映射模型。实验结果表明,提出的超分辨率方法不仅可行有效,而且与传统的单幅图像的超分辨率方法比较,其PSNR平均提高了0.06~3.92 dB,SSIM平均提高了0.002 4~0.034 8。从客观数值和主观视觉证明了所提方法的优秀性。

submitted time 2018-05-24 From cooperative journals:《计算机应用研究》 Hits1938Downloads1015 Comment 0

  [1 Pages/ 2 Totals]