Current Location:home > Browse

1. chinaXiv:202101.00072 [pdf]

How precipitation and grazing influence the ecological functions of drought-prone grasslands on the northern slopes of the Tianshan Mountains, China?

HUANG Xiaotao; LUO Geping; CHEN Chunbo; PENG Jian; ZHANG Chujie; ZHOU Huakun; YAO Buqing; MA Zhen; XI Xiaoyan
Subjects: Geosciences >> Geography

Drought-prone grasslands provide a critical resource for the millions of people who are dependent on livestock for food security. However, this ecosystem is potentially vulnerable to climate change (e.g., precipitation) and human activity (e.g., grazing). Despite this, the influences of precipitation and grazing on ecological functions of drought-prone grasslands in the Tianshan Mountains remain relatively unexplored. Therefore, we conducted a systematic field investigation and a clipping experiment (simulating different intensities of grazing) in a drought-prone grassland on the northern slopes of the Tianshan Mountains in China to examine the influences of precipitation and grazing on aboveground biomass (AGB), soil volumetric water content (SVWC), and precipitation use efficiency (PUE) during the period of 2014–2017. We obtained the meteorological and SVWC data using an HL20 Bowen ratio system and a PR2 soil profile hydrometer, respectively. We found that AGB was clearly affected by both the amount and seasonal pattern of precipitation, and that PUE may be relatively low in years with either low or excessive precipitation. The PUE values were generally higher in the rapid growing season (April–July) than in the entire growing season (April–October). Overall, moderate grazing can promote plant growth under water stress conditions. The SVWC value was higher in the clipped plots than in the unclipped plots in the rapid growing season (April–July), but it was lower in the clipped plots than in the unclipped plots in the slow growing season (August–October). Our findings can enhance the understanding of the ecological effects of precipitation and grazing in drought-prone grasslands and provide data that will support the effective local grassland management.

submitted time 2021-01-22 From cooperative journals:《Journal of Arid Land》 Hits286Downloads141 Comment 0

2. chinaXiv:202101.00074 [pdf]

Long-term variations in runoff of the Syr Darya River Basin under climate change and human activities

Subjects: Geosciences >> Geography

In this study, we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff. The Syr Darya River, which is supplied by snow and glacier meltwater upstream, is an important freshwater source for Central Asia, as nearly half of the population is concentrated in this area. River runoff in this arid region is sensitive to climate change and human activities. Therefore, estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management. The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods, including the Pettitt change point test and Mann-Kendall trend tests. It was found that 8 out of 11 hydrological stations showed significant downward trends in river runoff. Change of river runoff variations occurred in the year around 1960. Moreover, during the study period (1930–2015), annual mean temperature, annual precipitation, and annual potential evapotranspiration in the river basin increased substantially. We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration. It was estimated that human activities accounted for over 82.6%–98.7% of the reduction in river runoff, mainly owing to water withdrawal for irrigation purpose. The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.

submitted time 2021-01-22 From cooperative journals:《Journal of Arid Land》 Hits249Downloads127 Comment 0

3. chinaXiv:202101.00076 [pdf]

Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia

Durdiev KHAYDAR; CHEN Xi; HUANG Yue; Makhmudov ILKHOM; LIU Tie; Ochege FRIDAY; Abdullaev FARKHOD; Gafforov KHUSEN; Omarakunova GULKAIYR
Subjects: Geosciences >> Geography

High water consumption and inefficient irrigation management in the agriculture sector of the middle and lower reaches of the Amu Darya River Basin (ADRB) have significantly influenced the gradual shrinking of the Aral Sea and its ecosystem. In this study, we investigated the crop water consumption in the growing seasons and the irrigation water requirement for different crop types in the lower ADRB during 2004–2017. We applied the FAO Penman–Monteith method to estimate reference evapotranspiration (ET0) based on daily climatic data collected from four meteorological stations. Crop evapotranspiration (ETc) of specific crop types was calculated by the crop coefficient. Then, we analyzed the net irrigation requirement (NIR) based on the effective precipitation with crop water requirements. The results indicated that the lowest monthly ET0 values in the lower ADRB were found in December (18.2 mm) and January (16.0 mm), and the highest monthly ET0 values were found in June and July, with similar values of 211.6 mm. The annual ETc reached to 887.2, 1002.1, and 492.0 mm for cotton, rice, and wheat, respectively. The average regional NIR ranged from 514.9 to 715.0 mm in the 10 Irrigation System Management Organizations (UISs) in the study area, while the total required irrigation volume for the whole region ranged from 4.2×109 to 11.6×109 m3 during 2004–2017. The percentages of NIR in SIW (surface irrigation water) ranged from 46.4% to 65.2% during the study period, with the exceptions of the drought years of 2008 and 2011, in which there was a significantly less runoff in the Amu Darya River. This study provides an overview for local water authorities to achieve optimal regional water allocation in the study area.

submitted time 2021-01-22 From cooperative journals:《Journal of Arid Land》 Hits267Downloads149 Comment 0

4. chinaXiv:202010.00024 [pdf]

Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan Wild Fruit Forests, Northwest China

CHENG,Junhui; SHI,Xiaojun; FAN,Pengrui; ZHOU,Xiaobing; SHENG,Jiandong; ZHANG,Yuanming
Subjects: Geosciences >> History of Geosciences

In forest ecosystems, interactions between overstory trees and understory herbs play an important role in driving plant species diversity. However, reported links between overstory tree and understory herb species diversity have been inconsistent, due to variations in forest types and environmental conditions. Here, we measured species richness (SR) and diversity (Shannon-Wiener (H') and Simpson's (D) indices) of overstory trees and understory herbs in the protected Tianshan Wild Fruit Forest (TWFF), Northwest China, to explore their relationships along the latitudinal, longitudinal, elevational, and climatic (current climate and paleoclimate) gradients in 2018. We found that SR, and H' and D diversity indices of overstory trees and understory herbs exhibited a unimodal pattern with increasing latitude and elevation (P<0.05) and negative associations with longitude (P<0.01). Along the climatic gradients, there were U-shaped patterns in SR, and H' and D diversity indices between trees and herbs (P<0.05). SR, and H' and D diversity indices for overstory tree species were positively associated with those for understory herbs (P<0.01). These findings indicate that overstory trees and understory herbs should be protected concurrently in the TWFF to increase effectiveness of species diversity conservation programs.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits1358Downloads276 Comment 0

5. chinaXiv:202010.00035 [pdf]

Tree ring based drought variability in Northwest Tajikistan since 1895 AD

YANG,Meilin; YU,Yang; ZHANG,Haiyan; WANG,Qian; GAN,Miao; YU,Ruide
Subjects: Geosciences >> History of Geosciences

Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years, which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia. Forest trees are ecologically significant in the local environment, and therefore the tree ring analysis can provide a clear record of regional historical climate. This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index (SPEI) in Northwest Tajikistan, based on 56 tree ring samples collected from Shahristan in the Pamir region. Climate data including precipitation, temperature and the SPEI were downloaded from the Climate Research Unit (CRU) TS 4.00. The COFECHA program was used for cross-dating, and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees. A significant correlation was found between the radial growth of J. turkestanica trees and the monthly mean SPEI of February–April. The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed, and the reconstruction equation explained 42.5% of the variance. During the past 122 a (1895–2016), the study area has experienced three wetter periods (precipitation above average): 1901–1919, 1945–1983 and 1995–2010, and four drier periods (precipitation below average): 1895–1900, 1920–1944, 1984–1994 and 2011–2016. The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016. This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits2173Downloads2014 Comment 0

6. chinaXiv:202010.00036 [pdf]

Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017

CHEN,Ditao; LIU,Wenjiang; HUANG,Farong; LI,Qian; UCHENNA-OCHEGE,Friday ; LI,Lanhai
Subjects: Geosciences >> History of Geosciences

Playing an important role in global warming and plant growth, relative humidity (RH) has profound impacts on production and living, and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area. However, information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited. This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method, and the path analysis was used to clarify the impact of temperature (T), precipitation (P), actual evapotranspiration (ETa), wind speed (W) and sunshine duration (S) on RH. The results demonstrated that climatic conditions in North Xinjiang (NXJ) was more humid than those in Hexi Corridor (HXC) and South Xinjiang (SXJ). RH had a less significant downtrend in NXJ than that in HXC, but an increasingly rising trend was observed in SXJ during the last five decades, implying that HXC and NXJ were under the process of droughts, while SXJ was getting wetter. There was a turning point for the trend of RH in Xinjiang, which occurred in 2000. Path analysis indicated that RH was negatively correlated to T, ETa, W and S, but it increased with increase of P. S, T and W had the greatest direct effects on RH in HXC, NXJ and SXJ, respectively. ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ, while T was the dominant factor in SXJ.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits424Downloads247 Comment 0

7. chinaXiv:202010.00037 [pdf]

Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China

LI,Xuemei; SIMONOVIC,Slobodan P; LI,Lanhai; ZHANG,Xueting; QIN,Qirui
Subjects: Geosciences >> History of Geosciences

Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850–2000, the Climatic Research Unit (CRU) dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961–2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and arti?cial neural network (ANN) methods. Performance and uncertainty during the calibration (1971–1999) and verification (1961–1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits363Downloads205 Comment 0

8. chinaXiv:202006.00234 [pdf]

Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review

MA Jihong; TIAN Changyan; LYU Guanghui; MAI Wenxuan
Subjects: Geosciences >> History of Geosciences

Since 1996, transgenic Bacillus thuringiensis (Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research (including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm (Helicoverpa armigera) to the Bt toxins Cry1Ac and Cry2Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1Ac and Cry2Ab against cotton bollworm are not completely independent, and then propose the ''resistance-associated gene mutation potential hypothesis''. Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting ''pyramid'' strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits8762Downloads632 Comment 0

9. chinaXiv:202004.00044 [pdf]

Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan

Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage. In combination with aridity, climate change and extensive irrigation practices, this has led to the widespread salinization of agricultural land. The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016. A database of field measurements of groundwater levels, mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study. The total groundwater mineralization was determined using a portable electric conductometer (Progress 1T) and the chloride concentration was determined using the Mohr method. The soil salinity analyses were conducted by applying two different methods: (1) the extraction and assessment of the soluble salt content, and (2) using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water. The analyses of the monitoring results and the salt balance in the "irrigation water–soil–drainage water" system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved. Under these conditions, the stability of crop yields is achieved mainly through the use of large volumes of fertilizer. However, excess amounts of mineral fertilizers can also cause the salinization of soils. The average groundwater salinization value in most of the irrigated land (75.3%) fluctuated between 1.1 and 5.0 g/L, while the values were less than 1.0 g/L in 13.1% of the land and in the range of 5.1–10.0 g/L in 10.5% of the land. During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes: no salinity (17.7% of the total area), low salinity (51.3%), moderate salinity (29.0%), and high salinity (2.0%). Detailed studies of the salt balance in irrigated land, the impact of climate change, increased fertilizer use, and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future, due to the possibility of accelerated salinization, fertility decline, and reduced yields of agricultural crops.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits969Downloads533 Comment 0

10. chinaXiv:202004.00051 [pdf]

Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method

HUA Ding; HAO Xingming; ZHANG Ying; QIN Jingxiu
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

The Penman-Monteith (PM) method is the most widely used technique to estimate potential worldwide evapotranspiration. However, current research shows that there may be significant errors in the application of this method in arid areas, although questions remain as to the degree of this estimation error and how different surface conditions may affect the estimation error. To address these issues, we evaluated the uncertainty of the PM method under different underlying conditions in an arid area of Northwest China by analyzing data from 84 meteorological stations and various Moderate Resolution Imaging Spectroradiometer (MODIS) products, including land surface temperature and surface albedo. First, we found that when the PM method used air temperature to calculate the slope of the saturation vapor pressure curve, it significantly overestimated the potential evapotranspiration; the mean annual and July–August overestimation was 83.9 and 36.7 mm, respectively. Second, the PM method usually set the surface albedo to a fixed value, which led to the potential evapotranspiration being underestimated; the mean annual underestimation was 27.5 mm, while the overestimation for July to August was 5.3 mm. Third, the PM method significantly overestimated the potential evapotranspiration in the arid area. This difference in estimation was closely related to the underlying surface conditions. For the entire arid zone, the PM method overestimated the potential evapotranspiration by 33.7 mm per year, with an overestimation of 29.0 mm from July to August. The most significant overestimation was evident in the mountainous and plain non-vegetation areas, in which the annual mean overestimation reached 5% and 10%, respectively; during July, there was an estimation of 10% and 20%, respectively. Although the annual evapotranspiration of the plains with better vegetation coverage was slightly underestimated, overestimation still occurred in July and August, with a mean overestimation of approximately 5%. In order to estimate potential evapotranspiration in the arid zone, it is important that we identify a reasonable parameter with which to calibrate the PM formula, such as the slope of the saturation vapor pressure curve, and the surface albedo. We recommend that some parameters must be corrected when using PM in order to estimate potential evapotranspiration in arid regions.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits802Downloads426 Comment 0

12  Last  Go  [2 Pages/ 14 Totals]