统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test, NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法,其可以解读为对零假设H0或者备择假设H1的支持程度。其与NHST相比有如下优势:同时考虑H0和H1并可以用来支持H0、不“严重”地倾向于反对H0、可以监控证据强度的变化以及不受抽样计划的影响。目前,贝叶斯因子能够很便捷地通过开放的统计软件JASP实现,本文以贝叶斯t检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义,但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。 |
submitted time 2018-05-08 Hits83459, Downloads9859, Comment 0
多项式加工树(multinomial processing tree, MPT)从理论模型出发,使用多项式模型来拟合行为数据并估计理论模型中各个加工过程发生的可能性。该模型能够有效分离和量化不同心理过程,广泛应用于社会认知研究之中,如刻板印象、道德判断等。本文首先介绍该模型的基本原理及其实现,并以道德判断为例说明其在社会心理学中的最新应用。最后,总结其对社会心理学研究的意义,即可以作为一种方法提高研究的效度和精度,具有较高的实用价值,并指出其潜在不足。 |
submitted time 2018-01-17 Hits12239, Downloads2528, Comment 0