Current Location:home > Browse

Submitted Date

1. chinaXiv:202010.00024 [pdf]

Relationship of species diversity between overstory trees and understory herbs along the environmental gradients in the Tianshan Wild Fruit Forests, Northwest China

CHENG,Junhui; SHI,Xiaojun; FAN,Pengrui; ZHOU,Xiaobing; SHENG,Jiandong; ZHANG,Yuanming
Subjects: Geosciences >> History of Geosciences

In forest ecosystems, interactions between overstory trees and understory herbs play an important role in driving plant species diversity. However, reported links between overstory tree and understory herb species diversity have been inconsistent, due to variations in forest types and environmental conditions. Here, we measured species richness (SR) and diversity (Shannon-Wiener (H') and Simpson's (D) indices) of overstory trees and understory herbs in the protected Tianshan Wild Fruit Forest (TWFF), Northwest China, to explore their relationships along the latitudinal, longitudinal, elevational, and climatic (current climate and paleoclimate) gradients in 2018. We found that SR, and H' and D diversity indices of overstory trees and understory herbs exhibited a unimodal pattern with increasing latitude and elevation (P<0.05) and negative associations with longitude (P<0.01). Along the climatic gradients, there were U-shaped patterns in SR, and H' and D diversity indices between trees and herbs (P<0.05). SR, and H' and D diversity indices for overstory tree species were positively associated with those for understory herbs (P<0.01). These findings indicate that overstory trees and understory herbs should be protected concurrently in the TWFF to increase effectiveness of species diversity conservation programs.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits998Downloads101 Comment 0

2. chinaXiv:202010.00035 [pdf]

Tree ring based drought variability in Northwest Tajikistan since 1895 AD

YANG,Meilin; YU,Yang; ZHANG,Haiyan; WANG,Qian; GAN,Miao; YU,Ruide
Subjects: Geosciences >> History of Geosciences

Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years, which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia. Forest trees are ecologically significant in the local environment, and therefore the tree ring analysis can provide a clear record of regional historical climate. This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index (SPEI) in Northwest Tajikistan, based on 56 tree ring samples collected from Shahristan in the Pamir region. Climate data including precipitation, temperature and the SPEI were downloaded from the Climate Research Unit (CRU) TS 4.00. The COFECHA program was used for cross-dating, and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees. A significant correlation was found between the radial growth of J. turkestanica trees and the monthly mean SPEI of February–April. The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed, and the reconstruction equation explained 42.5% of the variance. During the past 122 a (1895–2016), the study area has experienced three wetter periods (precipitation above average): 1901–1919, 1945–1983 and 1995–2010, and four drier periods (precipitation below average): 1895–1900, 1920–1944, 1984–1994 and 2011–2016. The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016. This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits101Downloads60 Comment 0

3. chinaXiv:202010.00036 [pdf]

Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017

CHEN,Ditao; LIU,Wenjiang; HUANG,Farong; LI,Qian; UCHENNA-OCHEGE,Friday ; LI,Lanhai
Subjects: Geosciences >> History of Geosciences

Playing an important role in global warming and plant growth, relative humidity (RH) has profound impacts on production and living, and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area. However, information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited. This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method, and the path analysis was used to clarify the impact of temperature (T), precipitation (P), actual evapotranspiration (ETa), wind speed (W) and sunshine duration (S) on RH. The results demonstrated that climatic conditions in North Xinjiang (NXJ) was more humid than those in Hexi Corridor (HXC) and South Xinjiang (SXJ). RH had a less significant downtrend in NXJ than that in HXC, but an increasingly rising trend was observed in SXJ during the last five decades, implying that HXC and NXJ were under the process of droughts, while SXJ was getting wetter. There was a turning point for the trend of RH in Xinjiang, which occurred in 2000. Path analysis indicated that RH was negatively correlated to T, ETa, W and S, but it increased with increase of P. S, T and W had the greatest direct effects on RH in HXC, NXJ and SXJ, respectively. ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ, while T was the dominant factor in SXJ.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits108Downloads62 Comment 0

4. chinaXiv:202010.00037 [pdf]

Performance and uncertainty analysis of a short-term climate reconstruction based on multi-source data in the Tianshan Mountains region, China

LI,Xuemei; SIMONOVIC,Slobodan P; LI,Lanhai; ZHANG,Xueting; QIN,Qirui
Subjects: Geosciences >> History of Geosciences

Short-term climate reconstruction, i.e., the reproduction of short-term (several decades) historical climatic time series based on the relationship between observed data and available longer-term reference data in a certain area, can extend the length of climatic time series and offset the shortage of observations. This can be used to assess regional climate change over a much longer time scale. Based on monthly grid climate data from a Coupled Model Inter-comparison Project phase 5 (CMIP5) dataset for the period of 1850–2000, the Climatic Research Unit (CRU) dataset for the period of 1901–2000 and the observed data from 53 meteorological stations located in the Tianshan Mountains region (TMR) of China during the period of 1961–2011, we calibrated and validated monthly average temperature (MAT) and monthly accumulated precipitation (MAP) in the TMR using the delta, physical scaling (SP) and arti?cial neural network (ANN) methods. Performance and uncertainty during the calibration (1971–1999) and verification (1961–1970) periods were assessed and compared using traditional performance indices and a revised set pair analysis (RSPA) method. The calibration and verification processes were subjected to various sources of uncertainty due to the influence of different reconstructed variables, different data sources, and/or different methods used. According to traditional performance indices, both the CRU and CMIP5 datasets resulted in satisfactory calibrated and verified MAT time series at 53 meteorological stations and MAP time series at 20 meteorological stations using the delta and SP methods for the period of 1961–1999. However, the results differed from those obtained by the RSPA method. This showed that the CRU dataset produced a low degree of uncertainty (positive connection degree) during the calibration and verification of MAT using the delta and SP methods compared to the CMIP5 dataset. Overall, the calibrated and verified MAP had a high degree of uncertainty (negative connection degree) regardless of the dataset or reconstruction method used. Therefore, the reconstructed time series of MAT for the period of 1850 (or 1901)–1960 based on the CRU and CMIP5 datasets using the delta and SP methods could be used for further study. The results of this study will be useful for short-term (several decades) regional climate reconstruction and longer-term (100 a or more) assessments of regional climate change.

submitted time 2020-10-20 From cooperative journals:《Journal of Arid Land》 Hits84Downloads46 Comment 0

5. chinaXiv:202006.00234 [pdf]

Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review

MA Jihong; TIAN Changyan; LYU Guanghui; MAI Wenxuan
Subjects: Geosciences >> History of Geosciences

Since 1996, transgenic Bacillus thuringiensis (Bt) cotton has been commercially grown in numerous countries in an effort to stem the losses caused by key lepidopteran pests. However, the development of pest resistance to Bt toxins has jeopardized the continued utilization of Bt cotton. As a strategy designed to circumvent the development of resistance, Bt cotton varieties expressing two or more toxins targeting the same pest have been introduced. Nevertheless, from the perspective of long-term planting of Bt cotton, the potential risk of cross-resistance to these Bt toxins is a threat that cannot be ignored. In this paper, we review current research (including that based on the analysis of protein binding sites and resistance genes) on the resistance of cotton bollworm (Helicoverpa armigera) to the Bt toxins Cry1Ac and Cry2Ab and the interrelationship between these toxins. On the basis of existing evidence, we assume that the actions of Cry1Ac and Cry2Ab against cotton bollworm are not completely independent, and then propose the ''resistance-associated gene mutation potential hypothesis''. Although the mechanisms underlying the resistance of pests to Bt toxins are yet to be comprehensively elucidated, this hypothesis could undoubtedly have important implications for adopting ''pyramid'' strategy in the future. Further research is recommended to devise strategies to retard the development of H. armigera resistance to Bt cotton, either using different Bt toxins or their various combinations.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits8425Downloads471 Comment 0

6. chinaXiv:202004.00044 [pdf]

Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan

Rashid KULMATOV; Jasur MIRZAEV; Jilili ABUDUWAILI; Bakhtiyor KARIMOV
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage. In combination with aridity, climate change and extensive irrigation practices, this has led to the widespread salinization of agricultural land. The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016. A database of field measurements of groundwater levels, mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study. The total groundwater mineralization was determined using a portable electric conductometer (Progress 1T) and the chloride concentration was determined using the Mohr method. The soil salinity analyses were conducted by applying two different methods: (1) the extraction and assessment of the soluble salt content, and (2) using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water. The analyses of the monitoring results and the salt balance in the "irrigation water–soil–drainage water" system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved. Under these conditions, the stability of crop yields is achieved mainly through the use of large volumes of fertilizer. However, excess amounts of mineral fertilizers can also cause the salinization of soils. The average groundwater salinization value in most of the irrigated land (75.3%) fluctuated between 1.1 and 5.0 g/L, while the values were less than 1.0 g/L in 13.1% of the land and in the range of 5.1–10.0 g/L in 10.5% of the land. During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes: no salinity (17.7% of the total area), low salinity (51.3%), moderate salinity (29.0%), and high salinity (2.0%). Detailed studies of the salt balance in irrigated land, the impact of climate change, increased fertilizer use, and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future, due to the possibility of accelerated salinization, fertility decline, and reduced yields of agricultural crops.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits738Downloads407 Comment 0

7. chinaXiv:202004.00051 [pdf]

Uncertainty assessment of potential evapotranspiration in arid areas, as estimated by the Penman-Monteith method

HUA Ding; HAO Xingming; ZHANG Ying; QIN Jingxiu
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

The Penman-Monteith (PM) method is the most widely used technique to estimate potential worldwide evapotranspiration. However, current research shows that there may be significant errors in the application of this method in arid areas, although questions remain as to the degree of this estimation error and how different surface conditions may affect the estimation error. To address these issues, we evaluated the uncertainty of the PM method under different underlying conditions in an arid area of Northwest China by analyzing data from 84 meteorological stations and various Moderate Resolution Imaging Spectroradiometer (MODIS) products, including land surface temperature and surface albedo. First, we found that when the PM method used air temperature to calculate the slope of the saturation vapor pressure curve, it significantly overestimated the potential evapotranspiration; the mean annual and July–August overestimation was 83.9 and 36.7 mm, respectively. Second, the PM method usually set the surface albedo to a fixed value, which led to the potential evapotranspiration being underestimated; the mean annual underestimation was 27.5 mm, while the overestimation for July to August was 5.3 mm. Third, the PM method significantly overestimated the potential evapotranspiration in the arid area. This difference in estimation was closely related to the underlying surface conditions. For the entire arid zone, the PM method overestimated the potential evapotranspiration by 33.7 mm per year, with an overestimation of 29.0 mm from July to August. The most significant overestimation was evident in the mountainous and plain non-vegetation areas, in which the annual mean overestimation reached 5% and 10%, respectively; during July, there was an estimation of 10% and 20%, respectively. Although the annual evapotranspiration of the plains with better vegetation coverage was slightly underestimated, overestimation still occurred in July and August, with a mean overestimation of approximately 5%. In order to estimate potential evapotranspiration in the arid zone, it is important that we identify a reasonable parameter with which to calibrate the PM formula, such as the slope of the saturation vapor pressure curve, and the surface albedo. We recommend that some parameters must be corrected when using PM in order to estimate potential evapotranspiration in arid regions.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits582Downloads306 Comment 0

8. chinaXiv:201910.00057 [pdf]

Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China

ZHU Hai; HU Shunjun; YANG Jingsong; Fidele KARAMAGE; LI Hao; FU Sihua
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Soil moisture is critical for vegetation growth in deserts. However, detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported. In this study, we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016, to explore the spatio-temporal variation of soil moisture content, investigate the impact of Haloxylon ammodendron (C. A. Mey.) Bungeon soil moisture content in its root zone, and examine the factors influencing the soil moisture spatial pattern. One-way analysis of variance, least significant difference tests and correlation analysis were used to analyze the data. The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods, namely, a moisture-gaining period, a moisture-losing period and a moisture-stable period. According to the temporal and spatial variability, the 0–400 cm soil profile could be divided into two layers: an active layer with moderate variability and a stable layer with weak variability. The temporal variability was larger than the spatial variability in the active layer, and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top. The mean profile soil moisture content in the root zone of dead H. ammodendron individuals was significantly higher than that in the root zones of adult and young individuals, while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference. The spatial pattern of soil moisture was attributable to the combined effects of snowfall, vegetation and soil texture, whereas the effects of rainfall and evaporation were not significant. The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits2210Downloads578 Comment 0

9. chinaXiv:201810.00179 [pdf]

Comparing phreatic evaporation at zero water table depth with water surface evaporation

HU, Shunjun; GAN, Yongde; CHEN, Yongbao
Subjects: Geosciences >> History of Geosciences

Salt-affected soils are mostly found in irrigated areas within arid and semi-arid regions where the groundwater table is shallow. Soils of this type have become an increasingly severe problem because they threaten both the environment and the sustainable development of irrigated agriculture. A tool to estimate phreatic evaporation is therefore urgently required to minimize the salinization potential of salt-affected areas. In this context, phreatic evaporation at zero water table depth (E0) is a key parameter for establishing a model for calculating phreatic evaporation. The aim of this study was to explore the law of phreatic evaporation and to develop structurally rational empirical models for calculating phreatic evaporation, based on E0 data of six types of soil (i.e., gravel, fine sand, sandy loam, light loam, medium loam, and heavy loam) observed using the non-weighing lysimeter and water surface evaporation (E601) data observed using a E601 evaporator of same evaporation area with a lysimeter-tube at the groundwater balance station of the Weigan River Management Office in Xinjiang Uygur Autonomous Region, China, during the non-freezing period (April to October) between 1990 and 1994. The relationship between E0 and E601 was analyzed, the relationship between the ratio of E0 to E601 and the mechanical compositions of different soils was presented, and the factors influencing E0 were discussed. The results of this study reveal that E0 is not equal to E601. In fact, only values of the former for fine sand are close to those of the latter. Data also show that E0 values are related to soil texture as well as to potential atmospheric evaporation, the ratio of E0 to E601 and the silt-clay particle content (grain diameter less than 0.02 mm) is negatively exponentially correlated, and that soil thermal capacity plays a key role in phreatic evaporation at E0. The results of this analysis therefore imply that the treatment of zero phreatic depth is an essential requirement when constructing groundwater balance stations to study the law of phreatic evaporation

submitted time 2018-10-29 From cooperative journals:《Journal of Arid Land》 Hits3760Downloads881 Comment 0

10. chinaXiv:201810.00184 [pdf]

Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China

BA Wulong; DU Pengfei; LIU Tie; BAO Anming; LUO Min; Mujtaba HASSAN; QIN Chengxin
Subjects: Geosciences >> History of Geosciences

Climate change may affect water resources by altering various processes in natural ecosystems. Dynamic and statistical downscaling methods are commonly used to assess the impacts of climate change on water resources. Objectively, both methods have their own advantages and disadvantages. In the present study, we assessed the impacts of climate change on water resources during the future periods (2020–2029 and 2040–2049) in the upper reaches of the Kaidu River Basin, Xinjiang, China, and discussed the uncertainties in the research processes by integrating dynamic and statistical downscaling methods (regional climate models (RCMs) and general circulation modes (GCMs)) and utilizing these outputs. The reference period for this study is 1990–1999. The climate change trend is represented by three bias-corrected RCMs (i.e., Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA), Regional Climate Model version 4 (RegCM4), and Seoul National University Meso-scale Model version 5 (SUN-MM5)) and an ensemble of GCMs on the basis of delta change method under two future scenarios (RCP4.5 and RCP8.5). We applied the hydrological SWAT (Soil and Water Assessment Tool) model which uses the RCMs/GCMs outputs as input to analyze the impacts of climate change on the stream flow and peak flow of the upper reaches of the Kaidu River Basin. The simulation of climate factors under future scenarios indicates that both temperature and precipitation in the study area will increase in the future compared with the reference period, with the largest increase of annual mean temperature and largest percentage increase of mean annual precipitation being of 2.4°C and 38.4%, respectively. Based on the results from bias correction of climate model outputs, we conclude that the accuracy of RCM (regional climate model) simulation is much better for temperature than for precipitation. The percentage increase in precipitation simulated by the three RCMs is generally higher than that simulated by the ensemble of GCMs. As for the changes in seasonal precipitation, RCMs exhibit a large percentage increase in seasonal precipitation in the wet season, while the ensemble of GCMs shows a large percentage increase in the dry season. Most of the hydrological simulations indicate that the total stream flow will decrease in the future due to the increase of evaporation, and the maximum percentage decrease can reach up to 22.3%. The possibility of peak flow increasing in the future is expected to higher than 99%. These results indicate that less water is likely to be available in the upper reaches of the Kaidu River Basin in the future, and that the temporal distribution of flow may become more concentrated.

submitted time 2018-10-29 From cooperative journals:《Journal of Arid Land》 Hits3941Downloads920 Comment 0

12  Last  Go  [2 Pages/ 11 Totals]