• Vetoing Cosmogenic Muons in A Large Liquid Scintillator

    分类: 物理学 >> 核物理学 提交时间: 2016-09-13

    摘要: At upcoming medium baseline reactor neutrino experiments the spallation 9Li background will be somewhat larger than the inverse beta decay reactor neutrino signal. We use new FLUKA simulations of spallation backgrounds to optimize a class of veto strategies and find that surprisingly the optimal veto for the mass hierarchy determination has a rejection efficiency below 90%. The unrejected background has only a modest effect on the physics goals. For example Δχ2 for the hierarchy determination falls by 1.4 to 3 points depending on the muon tracking ability. The optimal veto strategy is essentially insensitive to the tracking ability, consisting of 2 meter radius, 1.1 second cylindrical vetoes of well tracked muons with showering energies above 3 to 4 GeV and 0.7 second full detector vetoes for poorly tracked muons above 15 to 18 GeV. On the other hand, as the uncertainty in theta12 will be dominated by the uncertainty in the reactor neutrino spectrum and not statistical fluctuations, the optimal rejection efficiency for the measurement of theta12 is 93% in the case of perfect tracking.

  • Measuring $\theta_12$ despite an uncertain reactor neutrino spectrum

    分类: 物理学 >> 核物理学 提交时间: 2016-09-13

    摘要: The recently discovered 5 MeV bump highlights that the uncertainty in the reactor neutrino spectrum is far greater than some theoretical estimates. Medium baseline reactor neutrino experiments will deliver by far the most precise ever measurements of theta12. However, as a result of the bump, such a determination of theta12 using the theoretical spectrum would yield a value of sin^2(2theta12) which is more than 1% higher than the true value. We show that by using recent measurements of the reactor neutrino spectrum the precision of a measurement of theta12 at a medium baseline reactor neutrino experiment can be improved appreciably. We estimate this precision as a function of the 9Li spallation background veto efficiency and dead time.