Current Location:home > Browse
Your conditions: 毛伊敏(5)

1. chinaXiv:202009.00109 [pdf]

基于MapReduce的并行频繁项集挖掘算法研究

刘卫明; 张弛; 毛伊敏
Subjects: Computer Science >> Integration Theory of Computer Science

针对并行MRPrePost (parallel PrePost algorithm based on MapReduce)频繁项集挖掘算法在大数据环境存在运行时间长,内存占用量大和节点负载不均衡的问题。提出一种基于DiffNodeset的并行频繁项集挖掘算法—PFIMD(parallel frequent itemsets mining using DiffNodeset)。该算法首先采用一种数据结构DiffNodeset,有效的避免了N-list基数过大的问题;此外提出一种双向比较策略“T-wcs”(2-way comparison strategy),以减少两个DiffNodeset在连接过程中的无效计算,极大的降低了算法时间复杂度;最后考虑到集群负载对并行算法效率的影响,进一步提出了一种基于动态分组的负载均衡策略“LBSBDG”(load balancing strategy based on dynamic grouping),该策略通过将频繁1项集F-list中的每项进行均匀分组,降低了集群中每个计算节点上PPC-Tree树的规模,进而减少了先序后序遍历PPC-Tree树所需的时间。实验结果表明,该算法在大数据环境下进行频繁项集挖掘具有较好的效果。

submitted time 2020-09-28 From cooperative journals:《计算机应用研究》 Hits1211Downloads33 Comment 0

2. chinaXiv:201904.00051 [pdf]

基于模糊蚁群的加权蛋白质复合物识别算法

毛伊敏; 刘银萍; 胡健
Subjects: Computer Science >> Integration Theory of Computer Science

针对蚁群融合模糊C-means (FCM)聚类算法在蛋白质相互作用网络中进行复合物识别的准确率不高、召回率较低以及时间性能不佳等问题进行了研究,提出一种基于模糊蚁群的加权蛋白质复合物识别算法FAC-PC (algorithm for identifying weighted protein complexes based on fuzzy ant colony clustering)。首先,融合边聚集系数与基因共表达的皮尔逊相关系数构建加权网络;其次提出EPS (essential protein selection)度量公式来选取关键蛋白质,遍历关键蛋白质的邻居节点,设计蛋白质适应度PFC (protein fitness calculation)来获取关键组蛋白质,利用关键组蛋白质替换种子节点进行蚁群聚类,克服蚁群算法中因大量拾起放下和重复合并过滤操作而导致准确率和收敛速度过慢的缺陷;接着设计相似度SI (similarity improvement)度量优化拾起放下概率来对节点进行蚁群聚类进而获得聚类数目;最后将关键蛋白质和通过蚁群聚类得到的聚类数目初始化FCM算法,设计隶属度更新策略来优化隶属度的更新,同时提出兼顾类内距和类间距的FCM迭代目标函数,最终利用改进的FCM完成复合物的识别。将FAC-PC算法应用在DIP数据上进行复合物的识别,实验结果表明FAC-PC算法的准确率和召回率较高,能够较准确地识别蛋白质复合物。

submitted time 2019-04-01 From cooperative journals:《计算机应用研究》 Hits15829Downloads1786 Comment 0

3. chinaXiv:201812.00124 [pdf]

基于蚁群聚类的动态加权PPI网络复合物挖掘

胡健; 朱海湾; 毛伊敏
Subjects: Computer Science >> Integration Theory of Computer Science

针对基于蚁群聚类的蛋白质复合物挖掘算法中,静态PPI网络难以真实反映细胞的动态特性,收敛速度较慢、聚类准确性和召回率不高等问题进行了研究,提出一种基于模糊粒度和紧密度的蚁群聚类的动态加权PPI网络复合物挖掘方法(joint fuzzy granular and closeness degree ant colony clustering-DPC,FGCDACC-DPC)。首先基于动态PPI网络的拓扑特性和生物特性设计了综合性权值度量(comprehensive weight metric,CWM),准确描述了蛋白质之间的相互作用;其次根据复合物的基本特征,构建一组稠密且高度共表达的复合核,然后设计模糊粒度和紧密度的拾起放下模型对其余节点聚类,降低了计算复杂度和随机性,加快聚类速度;最后基于功能信息传递和时序功能相关的思想分别构建了局部和全局权值更新策略,实现不同代蚁群和不同时刻网络之间的功能信息传递,提高聚类准确性。将FGCDACC-DPC算法应用在DIP数据上进行复合物挖掘,实验结果表明该算法的精度和召回率较高,能够较准确地识别蛋白质复合物。

submitted time 2018-12-13 From cooperative journals:《计算机应用研究》 Hits526Downloads300 Comment 0

4. chinaXiv:201805.00235 [pdf]

不确定NNSB-OPTICS聚类算法在滑坡危险性预测中的研究与应用

毛伊敏; 陈华彬; 李忠利; 张灿龙
Subjects: Computer Science >> Integration Theory of Computer Science

针对滑坡危险性预测中降雨等不确定因素不能有效刻画及处理和现有的OPTICS-PLUS聚类算法需要设置密度阈值、时间复杂度高等问题进行了研究,为了提高滑坡危险性预测准确率,提出一种不确定NNSB-OPTICS聚类算法并应用于滑坡预测中。首先对OPTICS-PLUS算法扩张策略进行优化,避免了人工设置密度阈值,提高了算法效率;然后根据降雨量数据的分布特征,综合EW型距离公式和云模型理论,提出EC型距离公式,有效处理不确定数据降雨量;最后将不确定NNSB-OPTICS聚类算法应用于延安市宝塔区滑坡危险性预测中,建立滑坡危险性预测模型,滑坡预测精度达到89.7%。实验结果表明,该方法能够有效提高滑坡危险性预测精度,具有较高可行性。

submitted time 2018-05-20 From cooperative journals:《计算机应用研究》 Hits918Downloads624 Comment 0

5. chinaXiv:201804.02059 [pdf]

不确定PAHT聚类算法在滑坡危险性预测上的应用

胡健; 朱玲; 毛伊敏
Subjects: Computer Science >> Integration Theory of Computer Science

针对滑坡预测聚类研究中由于难以确定传统聚类算法需要预先设置的簇个数和无法精准衡量不确定因素降雨量导致预测效果欠佳的问题,提出一种新的聚类算法—不确定PAHT(partition algorithm on the hierarchical thinking)算法,该算法引入一种不确定数据模型——M-D距离,其有效刻画了不确定的雨量数据;并结合层次聚类思想,通过找出最佳阙值p*自动确定k值。以延安宝塔区为实例进行对比实验,实验结果验证了不确定M-D距离和PAHT算法的有效性及不确定PAHT算法在滑坡危险性预测上的可行性。

submitted time 2018-04-19 From cooperative journals:《计算机应用研究》 Hits622Downloads366 Comment 0

  [1 Pages/ 5 Totals]