Current Location:home > Browse

1. chinaXiv:202009.00064 [pdf]

鲁棒可预测判别字典学习人脸识别方法

张健; 米建勋
Subjects: Computer Science >> Integration Theory of Computer Science

提出一种可预测判别K-SVD网络模型(DKSVDN)并用于人脸识别问题。该模型构造了一种新颖的字典结构,包含类别标签字典和描述字典,以兼顾判别和重构性能。相应的稀疏编码向量由标签编码向量和描述编码向量组成。针对样本稀疏编码时间效率低的问题,利用预测神经网络与判别字典学习模型协同训练的方法来加速预测稀疏编码。此外,针对DKSVDN还特别引入一种拟梦境的训练方法用于提升模型在训练集多样性不足时的鲁棒性。通过在主流人脸数据集上的对比实验证明了该模型的优良性能。

submitted time 2020-09-28 From cooperative journals:《计算机应用研究》 Hits1376Downloads128 Comment 0

2. chinaXiv:201901.00156 [pdf]

基于L2-范数重构样本约束的稀疏表示人脸识别方法

米建勋; 林志凯
Subjects: Computer Science >> Integration Theory of Computer Science

稀疏表示分类方法在训练样本空间较大的情况下具有良好的分类效果,但是计算的时间成本较高。针对稀疏表示方法的此问题,考虑构造对重构样本的L_2-范数约束,使得重构样本中各类别分量之间的竞争加强,以起到组稀疏的效果,最后提高分类正确率。由于该方法可以直接得到闭式解,使得求解的计算成本大大的减小,并且得到的系数稀疏程度与传统方法类似。在公开的人脸和物体图像数据集上和同类型方法的对比实验结果表明该方法在复杂的条件下具有优秀的图像识别效果。

submitted time 2019-01-28 From cooperative journals:《计算机应用研究》 Hits423Downloads235 Comment 0

3. chinaXiv:201805.00387 [pdf]

面向数据流的多任务多核在线学习算法

裴乐; 刘群
Subjects: Computer Science >> Integration Theory of Computer Science

多任务多核学习已逐渐成为在线学习算法研究的热点。对于数据流的处理,现有的在线学习算法在准确性上有一定的欠缺,因此提出一种新的多任务多核在线学习模型用于提高数据流预测的准确性。在保持多任务多核学习的基础上,将其扩展到在线学习中,从而得到一个新的在线学习算法;同时为输入数据保持一定大小的数据窗口,用较小空间换取数据的完整性。实验部分对核函数的选取以及训练样本集的大小进行了较为详细的分析,通过对UCI数据和实际的机场客流量数据进行分析,很好地保障了流数据处理的准确性及实时性,有一定的实际应用价值。

submitted time 2018-05-18 From cooperative journals:《计算机应用研究》 Hits615Downloads369 Comment 0

4. chinaXiv:201805.00042 [pdf]

基于稀疏表示的脑电(EEG)情感分类

邓欣; 高峰星; 米建勋; 李丹妮; 王进; 唐云
Subjects: Computer Science >> Integration Theory of Computer Science

计算机对人类情绪与情感的识别研究已经成为了脑机接口领域的研究热点。通过分析人类在生活中的各种情感状态,提取脑电信号的特征并对情感状态进行识别、分类是情感智能化领域的重要方向。针对基于音乐视频诱导的情感数据集DEAP进行了研究,提取脑电信号的频域特征后,提出了采用加速近邻梯度算法(APG)和正交匹配算法(OMP)求解稀疏编码的稀疏表示分类模型进行情感分类,并与支持向量机算法(SVM)做效果比较。实验结果表明,APG算法通过L1范数正则近似求解以其快速的收敛速度在情感数据集上有着较好的分类表现,而OMP算法与SVM算法的分类效果相差无几,实现了情感脑电信号的分类。

submitted time 2018-05-02 From cooperative journals:《计算机应用研究》 Hits1038Downloads669 Comment 0

5. chinaXiv:201804.02065 [pdf]

有向动态网络中基于模体演化的链路预测方法

杜凡; 刘群
Subjects: Computer Science >> Integration Theory of Computer Science

以往传统的链路预测方法大多数针对无向网络,而实际上大多数社交网络是有向的,并且没有考虑网络中同一节点对之间的重复边以及微观演化信息,因此不能较好地解决有向动态网络中的链路预测问题。针对有向网络,将节点对之间的重复边信息转换为该节点对之间连边的权值;接着采用了基于三元组模体的演化模型,对滑动窗口中相邻时间片的模体转换概率进行统计后,采用指数加权滑动平均法对其进行时序分析得到不同模体转换概率的预测矩阵,进而使用该矩阵对网络中的链边进行预测。这不仅充分利用了网络微观演化信息,而且解决了动态网络中重复边的问题。最后对实验结果进行分析发现,在高全局聚类系数高平均度的网络中AUC相比Triad Transition Matrix方法提高了近0.01,而相比Common Neighbor方法提高更多。因此,所提方法能够较好地应用网络微观演化信息进行链路预测。

submitted time 2018-04-19 From cooperative journals:《计算机应用研究》 Hits717Downloads420 Comment 0

  [1 Pages/ 5 Totals]