按提交时间
按主题分类
按作者
按机构
  • Environmental costs and benefits of growing Miscanthus for bioenergy in the UK

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: Planting the perennial biomass crop Miscanthus in the UK could offset 213Mtoileq.yr1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.32.2) than annual crops used for energy (4.70.2 to 5.50.2), and the total carbon cost of energy production (1.12gCO2-Ceq.MJ1) is 2030 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.72.2MgC4-Cha1yr1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water-use efficiency is high (e.g. 5.59.2gaerial DM (kgH2O)1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water-holding capacity (up by 100150mm), and reduces run-off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.

  • Evaluation of the ECOSSE model for simulating soil organic carbon under Miscanthus and short rotation coppice‐willow crops in Britain

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass MiscanthusxGiganteus (Miscanthus) and short rotation coppice (SRC)-willow. The amount of SOC sequestered in the soil is a function of site-specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC-willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land-use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC-willow. Twenty-nine locations in the United Kingdom, comprising 19 paired transitions to SRC-willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC-willow plantations, at two soil depths (030 and 0100cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC-willow plantations in the United Kingdom, provide confidence in using this process-based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.

  • Simulation of greenhouse gases following land‐use change to bioenergy crops using the ECOSSE model: a comparison between site measurements and model predictions

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC-Willow), short rotation forestry (SRF-Scots Pine) and Miscanthus after land-use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC-derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA-derived Rh and modelled outputs was statistically significant at the Aberystwyth site (r=0.64), but not significant at the Lincolnshire site (r=0.29). At all SRC-Willow sites, significant association was found between modelled and measurement-derived Rh (0.44r0.77); significant error was found only for the EC-derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF-Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA-derived Rh at one site (r=0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time-step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level.