• THE ROLE OF LARGE AMPLITUDE UPSTREAM LOW-FREQUENCY WAVES IN THE GENERATION OF SUPERTHERMAL IONS AT A QUASI-PARALLEL COLLISIONLESS SHOCK: CLUSTER OBSERVATIONS

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-12

    摘要: The superthermal ions at a quasi-parallel collisionless shock are considered to be generated during the reformation of the shock. Recently, hybrid simulations of a quasi-parallel shock have shown that during the reformation of a quasi-parallel shock the large-amplitude upstream low-frequency waves can trap the reflected ions at the shock front when they try to move upstream, and then these reflected ions can be accelerated several times to become superthermal ions. In this paper, with the Cluster observations of a quasi-parallel shock event, the relevance between the large-amplitude upstream low-frequency waves and the superthermal ions (about several keV) have been studied. The observations clearly show that the differential energy flux of superthermal ions in the upstream region is modulated by the upstream low-frequency waves, and the maxima of the differential energy flux are usually located between the peaks of these waves (including the shock front and the peak of the upstream wave just in front of the shock front). These superthermal ions are considered to originate from the reflected ions at the shock front, and the modulation is caused due to the trapping of the reflected ions between the upstream waves or the upstream waves and the shock front when these reflected ions try to travel upstream. It verifies the results from hybrid simulations, where the upstream waves play an important role in the generation of superthermal ions in a quasi-parallel shock.

  • IMPACT OF PICKUP IONS ON THE SHOCK FRONT NONSTATIONARITY AND ENERGY DISSIPATION OF THE HELIOSPHERIC TERMINATION SHOCK: TWO-DIMENSIONAL FULL PARTICLE SIMULATIONS AND COMPARISON WITH VOYAGER 2 OBSERVATIONS

    分类: 地球科学 >> 空间物理学 提交时间: 2016-05-12

    摘要: Voyager 2 (V2) observed multiple crossings of the heliospheric termination shock (TS) on 2007 August 31-September 1 at a distance of 84 AU from the Sun. Here, for the first time, we present two-dimensional particle-incell (PIC) simulations of the TS self-consistently including pickup ions (PUIs), and compare the simulation results with V2 observations. We find that (1) PUIs play a key role in the energy dissipation of the TS, and most of the incident ion kinetic energy is transferred to the thermal energy of PUIs. The PIC simulation indicates that, for the upstream parameters chosen for V2 conditions, the density of PUIs is about 25% and the PUIs gain the largest fraction (approximately 86.6%) of downstream thermal pressure. (2) The simulated heliosheath ion distribution function is a superposition of a cold core formed by transmitted solar wind ions (SWIs), with the shoulders contributed by the hot reflected SWIs and directly transmitted PUIs, and the wings of the distribution dominated by the very hot reflected PUIs. The V2 Faraday cups observed the cool core of the distribution, and so they only saw the tip of the iceberg. (3) The nonstationarity of the shock front is mainly caused by ripples along the shock front which form even if the percentage of PUIs is high. These simulation results agree reasonably well with the V2 experimental data. The relevance of the shock front ripples to the multiple TS crossings observed by V2 is also discussed in this paper.