Current Location:home > Browse

Submitted Date

Your conditions: 2019-10-26(13)

1. chinaXiv:201910.00048 [pdf]

Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015

XIONG Qinli ; XIAO Yang; Marwa Waseem A HALMY ; Mohammed A DAKHIL; LIANG Pinghan; LIU Chenggang; ZHANG Lin; Bikram PANDEY; PAN Kaiwen; Sameh B EL KAFRAWAY; CHEN Jun
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Climate change and human activities can influence vegetation net primary productivity (NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural values, is one of the most susceptible regions to climate change and human disturbances in the world. To assess the impact of climate change and human activities on vegetation dynamics in the grassland ecosystems of the northeastern Qinghai-Tibet Plateau, we applied a time-series trend analysis to normalized difference vegetation index (NDVI) datasets from 2000 to 2015 and compared these spatiotemporal variations with trends in climatic variables over the same time period. The constrained ordination approach (redundancy analysis) was used to determine which climatic variables or human-related factors mostly influenced the variation of NDVI. Furthermore, in order to determine whether current conservation measures and programs are effective in ecological protection and reconstruction, we divided the northeastern Qinghai-Tibet Plateau into two parts: the Three-River Headwater conservation area (TRH zone) in the south and the non-conservation area (NTRH zone) in the north. The results indicated an overall (73.32%) increasing trend of vegetation NPP in grasslands throughout the study area. During the period 2000–2015, NDVI in the TRH and NTRH zones increased at the rates of 0.0015/a and 0.0020/a, respectively. Specifically, precipitation accounted for 9.2% of the total variation in NDVI, while temperature accounted for 13.4%. In addition, variation in vegetation NPP of grasslands responded not only to long- and short-term changes in climate, as conceptualized in non-equilibrium theory, but also to the impact of human activities and their associated perturbations. The redundancy analysis successfully separated the relative contributions of climate change and human activities, of which village population and agricultural gross domestic product were the two most important contributors to the NDVI changes, explaining 17.8% and 17.1% of the total variation of NDVI (with the total contribution >30.0%), respectively. The total contribution percentages of climate change and human activities to the NDVI variation were 27.5% and 34.9%, respectively, in the northeastern Qinghai-Tibet Plateau. Finally, our study shows that the grassland restoration in the study area was enhanced by protection measures and programs in the TRH zone, which explained 7.6% of the total variation in NDVI.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits691Downloads49 Comment 0

2. chinaXiv:201910.00049 [pdf]

Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton

Rashid IQBAL; Muhammad A S RAZA; Muhammad F SALEEM; Imran H KHAN; Salman AHMAD; Muhammad S ZAHEER; Muhammad U ASLAM; Imran HAIDER
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Water is the main factor for the healthy life of plant. One of the main negative effects of climate change is the increasing scarcity of water that is lethal for plant. Globally, for water deficit regions (arid and semi-arid), drought is the main factor responsible for low production of agriculture, especially for cotton. Great efforts have been and are being made to find alternatives to water saving practices. This study aimed to examine the effects of partial rhizosphere drying (PRD, half of the root system irrigated at one event, and the other half irrigated in the next event, and so on) with and/or without various mulching treatments on physiological and biochemical traits of cotton. To explore this objective, we laid out experiments in completely randomized design with factorial arrangement in the Islamia University of Bahawalpur, Pakistan in 2016. Two factors included were four mulching treatments (M0, no mulching; M1, black plastic mulching; M2, wheat straw mulching; and M3, cotton sticks mulching) and two irrigation levels (I0, control (full irrigation); and I1, PRD). Fisher's analysis of variance among means of treatments was compared using least significant difference test at 5% probability level. Results revealed that the maximum plant height, leaf area, leaf gas exchange (photosynthetic rate and stomata conductance), chlorophyll, proline and total sugar contents, and enzyme activities were higher under M2 than under other three mulching treatments. As for irrigation levels, higher values of plant height, photosynthesis and water related parameters (leaf water potential, leaf osmotic potential, leaf turgor potential, etc.) were recorded. Contents of total sugar and proline and activities of antioxidant enzymes were significantly higher in PRD-treated plants than in control plants. It was concluded that combined application of PRD and mulching was more effective than the rest of the treatments used in the experiment. Similar study can be conducted in the field by applying irrigation water in alternate rows in semi-arid regions.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits667Downloads49 Comment 0

3. chinaXiv:201910.00050 [pdf]

Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China

Jannathan MAMUT; TAN Dunyan; Carol C BASKIN; Jerry M BASKIN
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of –0.05, –0.16, –0.33, –0.56, –0.85 and –1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (–0.05 and –0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at –0.85 and –1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits627Downloads33 Comment 0

4. chinaXiv:201910.00051 [pdf]

Modified non-rectangular hyperbola equation with plant height for photosynthetic light-response curves of Potentilla anserina and Elymus nutans at various growth phases in the Heihe River Basin, Northwest China

LIU Junjie1; WANG Xiaoping; RONG Zhanlei; GAO Yunfei; ZHANG Guangde; WANG Wenbin; GE Lijuan; MAO Yahua; GUO Zhaoxia; WANG Qingtao; ZHAO Chuanyan
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

The non-rectangular hyperbola (NRH) equation is the most popular method that plots the photosynthetic light-response (PLR) curve and helps to identify plant photosynthetic capability. However, the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development. Recently, plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation, but plant height (H), an important parameter in plant growth phases, is not taken into account. In this study, H was incorporated into the NRH equation to establish the modified NRH equation, which could be used to estimate photosynthetic capability of herbage at different growth phases. To explore photosynthetic capability of herbage, we selected the dominant herbage species Potentilla anserina L. and Elymus nutans Griseb. in the Heihe River Basin, Northwest China as the research materials. Totally, twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016. Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H. The modified NRH equation, which is established by introducing H and an H-based adjustment factor into the NRH equation, described better the PLR curves of P. anserina and E. nutans than the original ones. The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits624Downloads32 Comment 0

5. chinaXiv:201910.00052 [pdf]

Effects of temperature on flowering phenological traits of Populus euphratica Oliv. and Populus pruinosa Schrenk populations, Xinjiang, China

LI Zhijun; ZHANG Xiao; ZHENG Yaqiong; QIU Aijun; ZHANG Ling
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

The aims of this study were to explore the interspecific differences of Populus euphratica Oliv. and Populus pruinosa Schrenk populations and the intraspecific differences of males and females within the same species in flowering phenological traits, and the effects of temperatures on flowering phenological traits in different growth years (2001–2003 and 2013–2015). The results showed that P. euphratica population flowered earlier than P. pruinosa population. Moreover, flowering phenological period of population, number of days of flowering phenological period per population, number of days of flowering phenological period per plant and average number of days of flowering period per plant of P. euphratica population were less than those of P. pruinosa population. The differences between male and female within the same species indicated that the flowering periods of males P. euphratica and P. pruinosa populations were earlier than those of female plants. For both species, flowering phenological traits were significantly and negatively correlated with the average temperatures in previous ten days, previous one month and previous three months of flowering. Both species are sensitive to temperature changes and adjust to the changes by advancing the start of flowering and prolonging the duration of flowering.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits630Downloads38 Comment 0

6. chinaXiv:201910.00053 [pdf]

Effects of biochar on water movement characteristics in sandy soil under drip irrigation

PU Shenghai; LI Guangyong1; TANG Guangmu; ZHANG Yunshu ; XU Wanli; LI Pan; FENG Guangping; DING Feng
Subjects: Physics >> General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.

Biochar addition can improve the physical and hydraulic characteristics of sandy soil. This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation. By indoor simulation experiments, the effects of biochar application at five levels (0%, 1%, 2%, 4% and 6%) on the soil water retention curve, infiltration characteristics of drip irrigation and water distribution were tested and analyzed. The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water. Within the same infiltration time, with an increasing amount of added biochar, the diffusion distance of the horizontal wetting front (HWF) tended to decrease, while the infiltration distance of vertical wetting front (VWF) initially declined and then rose. The features of wetted bodies changed from "broad-shallow" to "narrow-deep" type. The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function. At the same distance from the point source, the larger the amount of added biochar, the higher the soil water content. Biochar had a great influence on the water content of the layer with biochar (0–200 mm) and had some effects at 200–250 mm without biochar; but it had less influence on the soil water content deeper than 250 mm. For the application rate of biochar of 4%, most water was retained within 0–250 mm soil layer. However, when biochar application amount was high (6%), it would be helpful for water infiltration. During the improvement of sandy soil, biochar application rate of 4% in the plow layer had the best effect.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits695Downloads45 Comment 0

7. chinaXiv:201910.00054 [pdf]

Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China

FAN Lianlian; DING Junxiang ; MA Xuexi, ; LI Yaoming
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Biomass allocation patterns among plant species are related to their adaptive ecological strategies. Ephemeral, ephemeroid and annual plant life forms represent three typical growth strategies of plants that grow in autumn and early spring in the cold deserts of China. These plants play an important role in reducing wind velocity in the desert areas. However, despite numerous studies, the strategies of biomass allocation among plant species with these three life forms remain contentious. In this study, we conducted a preliminary quadrat study during 2014–2016 in the southern part of the Gurbantunggut Desert, China, to investigate the allocation patterns of above-ground biomass (AGB) and below-ground biomass (BGB) at the individual level in 17 ephemeral, 3 ephemeroid and 4 annual plant species. Since ephemeral plants can germinate in autumn, we also compared biomass allocation patterns between plants that germinated in autumn 2015 and spring 2016 for 4 common ephemeral species. The healthy mature individual plants of each species were sampled and the AGB, BGB, total biomass (TB), leaf mass ratio (LMR) and root/shoot ratio (R/S) were calculated for 201 sample quadrats in the study area. We also studied the relationships between AGB and BGB of plants with the three different life forms (ephemeral, ephemeroid and annual). The mean AGB values of ephemeral, ephemeroid and annual plants were 0.806, 3.759 and 1.546 g/plant, respectively, and the mean BGB values were 0.106, 4.996 and 0.166 g/plant, respectively. The mean R/S value was significantly higher in ephemeroid plants (1.675) than in ephemeral (0.154) and annual (0.147) plants. The mean LMR was the highest in annual plants, followed by ephemeroid plants and ephemeral plants, reflecting the fact that annual plants allocate more biomass to leaves, associated with their longer life span. Biomass of ephemeral plants that germinated in autumn was significantly higher than those of corresponding plants that germinated in spring in terms of AGB, BGB and TB. However, the R/S value was similar in plants that germinated in autumn and spring. The slope of regression relationship between AGB and BGB differed significantly among the three plant life forms. These results support different biomass allocation hypotheses. Specifically, at the individual level, the AGB and BGB partitioning supports the allometric hypothesis for ephemeroid and annual plants and the isometric hypothesis for ephemeral plants.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits695Downloads36 Comment 0

8. chinaXiv:201910.00055 [pdf]

Impacts of water resource planning on regional water consumption pattern: A case study in Dunhuang Oasis, China

ZHANG Xifeng; JIN Xin; BAI Xiao; JIANG Yanbin1; HE Chansheng
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Water resources are critical for the existence and development of oases in endorheic basins. Thus, to enable sustainable development, it is fundamentally important to understand how to allocate and use these resources in a reasonable way. We therefore simulated and analyzed changes in water consumption pattern within the Dunhuang Oasis of China under three scenarios using a system dynamic model that corresponds to different water consumption pattern. This was done to assess the impacts of regional water resource planning (comprehensive planning of the rational use of water resource and protection of ecosystem services in the Dunhuang Basin) on water consumption pattern within the Dunhuang Oasis. The first of these, Scenario 1, is a baseline in which the status quo is maintained, while Scenario 2 incorporates the comprehensive effects of agricultural water-saving irrigation measures with an inter-basin water diversion project, and Scenario 3 focuses on ecological rehabilitation. In the baseline Scenario 1, the total water consumption within the Dunhuang Oasis increased progressively while agricultural water consumption remained extremely high and threatened overall ecological security. In contrast, Scenario 2 would decrease agricultural water consumption by almost 5.30×107 m3 following the implementation of water-saving practices. The additional water allocated from an inter-basin water diversion project would play an important role in alleviating ecological strain on the oasis. Finally, in Scenario 3, the total irrigated land must be decreased to 20.6×103 hm2 by 2025 assuming that water supply for ecosystem restoration would be at least 50% of the total consumption. Although water resource planning plays a very important role in alleviating the ecological water crisis within the oasis, it is necessary to consider the suitable scale of oasis with regard to current water consumption pattern.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits992Downloads381 Comment 0

9. chinaXiv:201910.00056 [pdf]

Wind regime for long-ridge yardangs in the Qaidam Basin, Northwest China

GAO Xuemin; DONG Zhibao; DUAN Zhenghu; LIU Min; CUI Xujia; LI Jiyan
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Yardangs are typical aeolian erosion landforms, which are attracting more and more attention of geomorphologists and geologists for their various morphology and enigmatic formation mechanisms. In order to clarify the aeolian environments that influence the development of long-ridge yardangs in the northwestern Qaidam Basin of China, the present research investigated the winds by installing wind observation tower in the field. We found that the sand-driving winds mainly blow from the north-northwest, northwest and north, and occur the most frequent in summer, because the high temperature increases atmospheric instability and leads to downward momentum transfer and active local convection during these months. The annual drift potential and the ratio of resultant drift potential indicate that the study area pertains to a high-energy wind environment and a narrow unimodal wind regime. The wind energy decreases from northwest to southeast in the Qaidam Basin, with the northerly winds in the northwestern basin changing to more westerly in the southeastern basin. The strong and unidirectional wind regime for the long-ridge yardangs in the northwestern Qaidam Basin results from the combined effects of topographic obstacles such as the Altun Mountains and of the interaction between the air stream and the yardang bodies. Present study suggests that yardang evolution needs such strong and unidirectional winds in high- or intermediate-energy wind environments. This differs from sandy deserts or sandy lands, which usually develop at low- or intermediate-energy wind environments. Present study clarifies the wind regime corresponding to the long-ridge yardangs' development, and lays firm foundation to put forward the formation mechanisms for yardangs in the Qaidam Basin.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits614Downloads33 Comment 0

10. chinaXiv:201910.00057 [pdf]

Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China

ZHU Hai; HU Shunjun; YANG Jingsong; Fidele KARAMAGE; LI Hao; FU Sihua
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Soil moisture is critical for vegetation growth in deserts. However, detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported. In this study, we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016, to explore the spatio-temporal variation of soil moisture content, investigate the impact of Haloxylon ammodendron (C. A. Mey.) Bungeon soil moisture content in its root zone, and examine the factors influencing the soil moisture spatial pattern. One-way analysis of variance, least significant difference tests and correlation analysis were used to analyze the data. The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods, namely, a moisture-gaining period, a moisture-losing period and a moisture-stable period. According to the temporal and spatial variability, the 0–400 cm soil profile could be divided into two layers: an active layer with moderate variability and a stable layer with weak variability. The temporal variability was larger than the spatial variability in the active layer, and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top. The mean profile soil moisture content in the root zone of dead H. ammodendron individuals was significantly higher than that in the root zones of adult and young individuals, while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference. The spatial pattern of soil moisture was attributable to the combined effects of snowfall, vegetation and soil texture, whereas the effects of rainfall and evaporation were not significant. The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits624Downloads42 Comment 0

12  Last  Go  [2 Pages/ 13 Totals]