Current Location:home > Browse

1. chinaXiv:201612.00113 [pdf]

ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS: II. SLOW EVENTS AND COMPARISON WITH OTHERS

Liu, Ying D.; Hu, Huidong; Wang, Chi; Luhmann, Janet G.; Richardson, John D.(); Yang, Zhongwei; Wang, Rui1()
Subjects: Geosciences >> Space Physics

As a follow-up study on Sun-to-Earth propagation of fast coronal mass ejections (CMEs), we examine the Sun-to-Earth characteristics of slow CMEs combining heliospheric imaging and in situ observations. Three events of particular interest, the 2010 June 16, 2011 March 25, and 2012 September 25 CMEs, are selected for this study. We compare slow CMEs with fast and intermediate-speed events, and obtain key results complementing the attempt of Liu et al. to create a general picture of CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of a typical slow CME can be approximately described by two phases, a gradual acceleration out to about 20-30 solar radii, followed by a nearly invariant speed around the average solar wind level; (2) comparison between different types of CMEs indicates that faster CMEs tend to accelerate and decelerate more rapidly and have shorter cessation distances for the acceleration and deceleration; (3) both intermediate-speed and slow CMEs would have speeds comparable to the average solar wind level before reaching 1 au; (4) slow CMEs have a high potential to interact with other solar wind structures in the Sun-Earth space due to their slow motion, providing critical ingredients to enhance space weather; and (5) the slow CMEs studied here lack strong magnetic fields at the Earth but tend to preserve a flux-rope structure with an. axis generally perpendicular to the radial direction from the Sun. We also suggest a "best" strategy for the application of a triangulation concept in determining CME Sun-to-Earth kinematics, which helps to clarify confusions about CME geometry assumptions in the triangulation and to improve CME analysis and observations.

submitted time 2016-12-26 Hits503Downloads300 Comment 0

2. chinaXiv:201612.00111 [pdf]

SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

Zhu, Bei; Liu, Ying D.; Luhmann, Janet G.; Hu, Huidong; Wang, Rui; Yang, Zhongwei
Subjects: Geosciences >> Space Physics

We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A, was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory, suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

submitted time 2016-12-26 Hits458Downloads271 Comment 0

3. chinaXiv:201612.00086 [pdf]

PROPAGATION OF THE 2012 MARCH CORONAL MASS EJECTIONS FROM THE SUN TO HELIOPAUSE

Liu, Ying D.; Richardson, John D.; Wang, Chi; Luhmann, Janet G.
Subjects: Geosciences >> Space Physics

In 2012 March the Sun exhibited extraordinary activities. In particular, the active region NOAA AR 11429 emitted a series of large coronal mass ejections (CMEs) which were imaged by the Solar Terrestrial Relations Observatory as it rotated with the Sun from the east to west. These sustained eruptions are expected to generate a global shell of disturbed material sweeping through the heliosphere. A cluster of shocks and interplanetary CMEs were observed near the Earth, and are propagated outward from 1 AU using an MHD model. The transient streams interact with each other, which erases memory of the source and results in a large merged interaction region (MIR) with a preceding shock. The MHD model predicts that the shock and MIR would reach 120 AU around 2013 April 22, which agrees well with the period of radio emissions and the time of a transient disturbance in galactic cosmic rays detected by Voyager 1. These results are important for understanding the "fate" of CMEs in the outer heliosphere and provide confidence that the heliopause is located around 120 AU from the Sun.

submitted time 2016-12-22 Hits417Downloads257 Comment 0

4. chinaXiv:201605.01577 [pdf]

PLASMA AND MAGNETIC FIELD CHARACTERISTICS OF SOLAR CORONAL MASS EJECTIONS IN RELATION TO GEOMAGNETIC STORM INTENSITY AND VARIABILITY

Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei; Zhu, Bei; Liu, Yi A.; Luhmann, Janet G.; Richardson, John D.
Subjects: Geosciences >> Space Physics

The largest geomagnetic storms of solar cycle 24 so far occurred on 2015 March 17 and June 22 with D-st minima of -223 and -195 nT, respectively. Both of the geomagnetic storms show a multi-step development. We examine the plasma and magnetic field characteristics of the driving coronal mass ejections (CMEs) in connection with the development of the geomagnetic storms. A particular effort is to reconstruct the in situ structure using a Grad-Shafranov technique and compare the reconstruction results with solar observations, which gives a larger spatial perspective of the source conditions than one-dimensional in situ measurements. Key results are obtained concerning how the plasma and magnetic field characteristics of CMEs control the geomagnetic storm intensity and variability: (1) a sheath-ejecta-ejecta mechanism and a sheath-sheath-ejecta scenario are proposed for the multi-step development of the 2015 March 17 and June 22 geomagnetic storms, respectively;(2) two contrasting cases of how the CME flux-rope characteristics generate intense geomagnetic storms are found, which indicates that a southward flux-rope orientation is not a necessity for a strong geomagnetic storm;and (3) the unexpected 2015 March 17 intense geomagnetic storm resulted from the interaction between two successive CMEs plus the compression by a high-speed stream from behind, which is essentially the "perfect storm" scenario proposed by Liu et al. (i.e., a combination of circumstances results in an event of unusual magnitude), so the "perfect storm" scenario may not be as rare as the phrase implies.

submitted time 2016-05-12 Hits448Downloads277 Comment 0

5. chinaXiv:201605.01568 [pdf]

STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.; Kapyla, M. J.; Tanskanen, E. I.; Miyahara, H.; Kataoka, R.; Pelt, J.; Liu, Y. D.
Subjects: Geosciences >> Space Physics

We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr. complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

submitted time 2016-05-12 Hits210Downloads158 Comment 0

6. chinaXiv:201605.01566 [pdf]

SIMULATIONS OF THE SPATIAL AND TEMPORAL INVARIANCE IN THE SPECTRA OF GRADUAL SOLAR ENERGETIC PARTICLE EVENTS

Wang, Yang; Qin, Gang
Subjects: Geosciences >> Space Physics

The spatial and temporal invariance in the spectra of energetic particles in gradual solar events is reproduced in simulations. Based on a numerical solution of the focused transport equation, we obtain the intensity time profiles of solar energetic particles (SEPs) accelerated by an interplanetary shock in three-dimensional interplanetary space. The shock is treated as a moving source of energetic particles with a distribution function. The time profiles of particle fluxes. with different energies are calculated in the ecliptic at 1 AU. According to our model, we find that shock acceleration strength, parallel diffusion, and adiabatic cooling are the main factors in forming the spatial invariance in SEP spectra, and perpendicular diffusion is a secondary factor. In addition, the temporal invariance in SEP spectra is mainly due to the effects of adiabatic cooling. Furthermore, a spectra invariant region, which agrees with observations but is different from. the one suggested by Reames et al. is proposed based on our simulations.

submitted time 2016-05-12 Hits329Downloads191 Comment 0

7. chinaXiv:201605.01565 [pdf]

SIMULATIONS OF A GRADUAL SOLAR ENERGETIC PARTICLE EVENT OBSERVED BY HELIOS 1, HELIOS 2, AND IMP 8

Qin, Gang; Wang, Yang
Subjects: Geosciences >> Space Physics

In this work, a gradual solar energetic particle (SEP) event observed by multi-spacecraft has been simulated. The time profiles of SEP fluxes accelerated by an interplanetary shock in the three-dimensional interplanetary space are obtained by solving numerically the Fokker-Planck focused transport equation. The interplanetary shock is modeled as a moving source of energetic particles. By fitting the 1979 March 01 SEP fluxes observed by Helios 1, Helios 2, and IMP 8 with our simulations, we obtain the best parameters for the shock acceleration efficiency model. And we also find that the particle perpendicular diffusion coefficient with the level of similar to 1%-3% of parallel diffusion coefficient at 1 AU should be included. The reservoir phenomenon is reproduced in the simulations, and the longitudinal gradient of SEP fluxes in the decay phase, which is observed by three spacecraft at different locations, is more sensitive to the shock acceleration efficiency parameters than that is to the perpendicular diffusion coefficient.

submitted time 2016-05-12 Hits300Downloads177 Comment 0

8. chinaXiv:201605.01562 [pdf]

IMPACT OF PICKUP IONS ON THE SHOCK FRONT NONSTATIONARITY AND ENERGY DISSIPATION OF THE HELIOSPHERIC TERMINATION SHOCK: TWO-DIMENSIONAL FULL PARTICLE SIMULATIONS AND COMPARISON WITH VOYAGER 2 OBSERVATIONS

Yang, Zhongwei; Liu, Ying D.; Richardson, John D.; Lu, Quanming; Huang, Can; Wang, Rui
Subjects: Geosciences >> Space Physics

Voyager 2 (V2) observed multiple crossings of the heliospheric termination shock (TS) on 2007 August 31-September 1 at a distance of 84 AU from the Sun. Here, for the first time, we present two-dimensional particle-incell (PIC) simulations of the TS self-consistently including pickup ions (PUIs), and compare the simulation results with V2 observations. We find that (1) PUIs play a key role in the energy dissipation of the TS, and most of the incident ion kinetic energy is transferred to the thermal energy of PUIs. The PIC simulation indicates that, for the upstream parameters chosen for V2 conditions, the density of PUIs is about 25% and the PUIs gain the largest fraction (approximately 86.6%) of downstream thermal pressure. (2) The simulated heliosheath ion distribution function is a superposition of a cold core formed by transmitted solar wind ions (SWIs), with the shoulders contributed by the hot reflected SWIs and directly transmitted PUIs, and the wings of the distribution dominated by the very hot reflected PUIs. The V2 Faraday cups observed the cool core of the distribution, and so they only saw the tip of the iceberg. (3) The nonstationarity of the shock front is mainly caused by ripples along the shock front which form even if the percentage of PUIs is high. These simulation results agree reasonably well with the V2 experimental data. The relevance of the shock front ripples to the multiple TS crossings observed by V2 is also discussed in this paper.

submitted time 2016-05-12 Hits369Downloads224 Comment 0

  [1 Pages/ 8 Totals]