Current Location:home > Browse

1. chinaXiv:201605.01575 [pdf]

FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

Shen, Yuandeng; Liu, Yu; Liu, Ying D.; Chen, P. F.; Su, Jiangtao; Xu, Zhi; Liu, Zhong
Subjects: Geosciences >> Space Physics

We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

submitted time 2016-05-12 Hits342Downloads219 Comment 0

2. chinaXiv:201605.01571 [pdf]

THE ROLE OF ACTIVE REGION CORONAL MAGNETIC FIELD IN DETERMINING CORONAL MASS EJECTION PROPAGATION DIRECTION

Wang, Rui; Liu, Ying D.; Dai, Xinghua; Yang, Zhongwei; Huang, Chong; Hu, Huidong
Subjects: Geosciences >> Space Physics

We study the role of the coronal magnetic field configuration of an active region (AR) in determining the propagation direction of a coronal mass ejection (CME). The CME occurred in the AR 11944 (S09W01) near the disk center on 2014 January 7 and was associated with an X1.2 flare. A new CME reconstruction procedure based on a polarimetric technique is adopted, which shows that the CME changed its propagation direction by around 28 degrees in latitude within 2.5 R-circle dot and 43 degrees in longitude within 6.5 R-circle dot with respect to the CME source region. This significant non-radial motion is consistent with the finding of Mostl et al. We use nonlinear force-free field and potential field source surface extrapolation methods to determine the configurations of the coronal magnetic field. We also calculate the magnetic energy density distributions at different heights based on the extrapolations. Our results show that the AR coronal magnetic field has a strong influence on the CME propagation direction. This is consistent with the "channeling" by the AR coronal magnetic field itself, rather than deflection by nearby structures. These results indicate that the AR coronal magnetic field configuration has to be taken into account in order to determine CME propagation direction correctly.

submitted time 2016-05-12 Hits418Downloads254 Comment 0

  [1 Pages/ 2 Totals]