Current Location:home > Browse
Your conditions: Astley Hastings(5)

1. chinaXiv:201605.00546 [pdf]

Environmental costs and benefits of growing Miscanthus for bioenergy in the UK

Jon P. McCalmont; Astley Hastings; Niall P. McNamara; Goetz M. Richter; Paul Robson; Iain S. Donnison; John Clifton-Brown
Subjects: Biology >> Botany >> Plant ecology, plant geography

Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr−1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2-C eq. MJ−1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4-C ha−1 yr−1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water-use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)−1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water-holding capacity (up by 100–150 mm), and reduces run-off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.

submitted time 2016-05-04 Hits7330Downloads547 Comment 0

2. chinaXiv:201605.00544 [pdf]

Global change synergies and trade‐offs between renewable energy and biodiversity

Andrea Santangeli; Tuuli Toivonen; Federico Montesino Pouzols; Mark Pogson; Astley Hastings; Pete Smith; Atte Moilanen
Subjects: Biology >> Botany >> Plant ecology, plant geography

Reliance on fossil fuels is causing unprecedented climate change and is accelerating environmental degradation and global biodiversity loss. Together, climate change and biodiversity loss, if not averted urgently, may inflict severe damage on ecosystem processes, functions and services that support the welfare of modern societies. Increasing renewable energy deployment and expanding the current protected area network represent key solutions to these challenges, but conflicts may arise over the use of limited land for energy production as opposed to biodiversity conservation. Here, we compare recently identified core areas for the expansion of the global protected area network with the renewable energy potential available from land-based solar photovoltaic, wind energy and bioenergy (in the form of Miscanthus × giganteus). We show that these energy sources have very different biodiversity impacts and net energy contributions. The extent of risks and opportunities deriving from renewable energy development is highly dependent on the type of renewable source harvested, the restrictions imposed on energy harvest and the region considered, with Central America appearing at particularly high potential risk from renewable energy expansion. Without restrictions on power generation due to factors such as production and transport costs, we show that bioenergy production is a major potential threat to biodiversity, while the potential impact of wind and solar appears smaller than that of bioenergy. However, these differences become reduced when energy potential is restricted by external factors including local energy demand. Overall, we found that areas of opportunity for developing solar and wind energy with little harm to biodiversity could exist in several regions of the world, with the magnitude of potential impact being particularly dependent on restrictions imposed by local energy demand. The evidence provided here helps guide sustainable development of renewable energy and contributes to the targeting of global efforts in climate mitigation and biodiversity conservation.

submitted time 2016-05-04 Hits5472Downloads580 Comment 0

3. chinaXiv:201605.00511 [pdf]

Synergies and trade‐offs between renewable energy expansion and biodiversity conservation – a cross‐national multifactor analysis

Andrea Santangeli; Enrico Di Minin; Tuuli Toivonen; Mark Pogson; Astley Hastings; Pete Smith; Atte Moilanen
Subjects: Biology >> Botany >> Plant ecology, plant geography

Increased deployment of renewable energy can contribute towards mitigating climate change and improving air quality, wealth and development. However, renewable energy technologies are not free of environmental impacts; thus, it is important to identify opportunities and potential threats from the expansion of renewable energy deployment. Currently, there is no cross-national comprehensive analysis linking renewable energy potential simultaneously to socio-economic and political factors and biodiversity priority locations. Here, we quantify the relationship between the fraction of land-based renewable energy (including solar photovoltaic, wind and bioenergy) potential available outside the top biodiversity areas (i.e. outside the highest ranked 30% priority areas for biodiversity conservation) within each country, with selected socio-economic and geopolitical factors as well as biodiversity assets. We do so for two scenarios that identify priority areas for biodiversity conservation alternatively in a globally coordinated manner vs. separately for individual countries. We show that very different opportunities and challenges emerge if the priority areas for biodiversity protection are identified globally or designated nationally. In the former scenario, potential for solar, wind and bioenergy outside the top biodiversity areas is highest in developing countries, in sparsely populated countries and in countries of low biodiversity potential but with high air pollution mortality. Conversely, when priority areas for biodiversity protection are designated nationally, renewable energy potential outside the top biodiversity areas is highest in countries with good governance but also in countries with high biodiversity potential and population density. Overall, these results identify both clear opportunities but also risks that should be considered carefully when making decisions about renewable energy policies.

submitted time 2016-05-04 Hits418Downloads260 Comment 0

4. chinaXiv:201605.00502 [pdf]

High‐resolution spatial modelling of greenhouse gas emissions from land‐use change to energy crops in the United Kingdom

Mark Richards; Mark Pogson; Marta Dondini; Edward O. Jones; Astley Hastings; Dagmar N. Henner; Matthew J. Tallis; Eric Casella; Robert W. Matthews; Paul A. Henshall; Suzanne Milner; Gail Taylor; Niall P. McNamara; Jo U. Smith; Pete Smith
Subjects: Biology >> Botany >> Plant ecology, plant geography

We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors (e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.

submitted time 2016-05-04 Hits484Downloads290 Comment 0

5. chinaXiv:201605.00498 [pdf]

The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus × giganteus

Evangelia Stavridou; Astley Hastings; Richard J. Webster; Paul R. H. Robson
Subjects: Biology >> Botany >> Plant ecology, plant geography

High salinity land may provide an alternative resource for the cultivation of dedicated biomass crops for renewable energy and chemicals, thus avoiding competition for land use with food crops. The commercial perennial grass Miscanthus × giganteus is a leading biomass crop; however, its response to salt stress is largely unknown. Miscanthus × giganteus was grown in pots irrigated with nine different NaCl concentrations (0, 2.86, 5.44, 7.96, 10.65, 14.68, 17.5, 19.97 and 22.4 dS m−1). Biomass yield was reduced by 50% at 10.65 dS m−1 NaCl. Root dry matter inhibition occurred at the highest salt concentration tested, while rhizome dry weight and the ratios of root/rhizome and below-/above-ground dry matter were not affected by elevated salinity. The accumulative effect of increasing salinity reduced stem height and elongation, while photosynthesis was reduced to a smaller extent. The duration and strength of salinity exacerbated the reduction. Water use efficiency (WUE) was maintained except at the highest salinity and plants maintained stomatal conductance (gs) and leaf water content at low to moderate salinity. Miscanthus × giganteus showed strong induction of the osmoprotectant, proline and no significant increase in malondialdehyde content under increasing salinity. The ash content in leaves, increased, reducing the biomass quality at high salinity concentrations. The effects of salinity on the yield and the availability of land area in European geographical area for agriculture were investigated. Understanding the potential for growth of the C4 biomass crop Miscanthus on underutilized or abandoned land may offer a new range of targets for improved economics, crop management and breeding.

submitted time 2016-05-04 Hits247Downloads160 Comment 0

  [1 Pages/ 5 Totals]