Current Location:home > Browse
Your conditions: 2019-03-28(6)

1. chinaXiv:201903.00232 [pdf]

Conversion of cropland into agroforestry land versus naturally-restored grassland alters soil macro-faunal diversity and trophic structure in the semi-arid agro-pasture zone of northern China

LIU Rentao
Subjects: Biology >> Ecology

Restoration of cropland (termed 'Farm') after abandonment including shrubs (termed 'Shrub'), trees (termed 'Tree') and natural grassland (termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites (Farm, Shrub, Tree, and Grass) during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores (i.e., Formicidae family) was significantly (P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly (P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly (P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites, the Grass site had greater density, taxon richness, and Shannon index (P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits1187Downloads1031 Comment 0

2. chinaXiv:201903.00235 [pdf]

Impact of air drought on photosynthesis efficiency of the Siberian crabapple (Malus baccata L. Borkh.) in the forest-steppe zone of Transbaikalia, Russia

Alexandr RUDIKOVSKII
Subjects: Biology >> Botany

The adaption of photosynthesis, being a key metabolic process, plays an important role in plant resistance to air drought. In this study, the Siberian crabapple (Malus baccata L. Borkh.) in the forest-steppe zone of Transbaikalia region, Russia, was subjected to air drought stress and its photosynthesis characteristics were analyzed. The results show that air drought and sufficient soil moisture supply lead to the decrease in the total chlorophyll (Chl) content, while the ratio of Chls to carotenoids is constant in the Siberian crabapple tree. The function of photosystem II (PS-II) in the crabapple trees is characterized by a decrease in the fraction of absorbed light energy spent on the photochemical work and an increase in the proportion of non-photosynthetic thermal quenching. These changes indicate the photosynthetic down-regulation that acts as a universal photoprotective mechanism. During the midday hours, the combination of high air temperature and low air humidity leads to the decrease in the maximum photochemical quantum yield of photosystem II (Fv/Fm) and the efficiency of photosynthesis (PABS). The parameters of leaf gas exchange show the significant differences in these values between the control and experimental variants. During the morning hours, the Siberian crabapple, growing in the Irkutsk City, assimilates carbon dioxide more intensively. Due to the higher air humidity, the stomata are kept open and the necessary amount of carbon dioxide entries the sites of carboxylation. The low air humidity combined with wind in the experimental variants leads to the unreasonably high water loss in the crabapple leaves by more than 27% as compared to the control variant (Irkutsk City). However, water use efficiency in the morning hours increases during plant photosynthetic processes, i.e., 42% higher than that of control. This, apparently, is a reflection of the adaptation processes of the Siberian crabapple to the air drought and parching wind.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits243Downloads106 Comment 0

3. chinaXiv:201903.00236 [pdf]

Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland

WANG Bisheng; GAO Lili; WEI Xueqin
Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Soil Science

To ascertain the effects of long-term conservation tillage and residue retention on soil organic carbon (SOC) content and aggregate distribution in a deep soil (>20-cm depth) in a dryland environment, this paper analyzed the SOC and aggregate distribution in soil, and the aggregate-associated organic carbon (OC) and SOC physical fractions. Conservation tillage (reduced tillage with residue incorporated (RT) and no-tillage with residue mulch (NT)) significantly increased SOC sequestration and soil aggregation in deep soil compared with conventional tillage with residue removal (CT). Compared with CT, RT significantly increased the proportion of small macroaggregates by 23%–81% in the 10–80 cm layer, and the OC content in small macroaggregates by 1%–58% in the 0–80 cm layer. RT significantly increased (by 24%–90%) the OC content in mineral-SOC within small macroaggregates in the 0–60 cm layer, while there was a 23%–80% increase in the 0–40 cm layer with NT. These results indicated that: (1) conservation tillage treatments are beneficial for soil aggregation and SOC sequestration in a deep soil in a dryland environment; and (2) the SOC in mineral-associated OC plays important roles in soil aggregation and SOC sequestration. In conclusion, RT with NT is recommended as an agricultural management tool in dryland soils because of its role in improving soil aggregation and SOC sequestration.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits141Downloads66 Comment 0

4. chinaXiv:201903.00237 [pdf]

Spatial distribution of water-active soil layer along the south-north transect in the Loess Plateau of China

ZHAO Chunlei; SHAO Ming'an
Subjects: Geosciences >> Geography

Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum. However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the soil profile. For deep insight into water active layer (WAL, defined as the soil layer with a coefficient of variation in soil water content >10% in a given time domain) in the Loess Plateau of China, we measured soil water content (SWC) in the 0.0–5.0 m soil profile from 86 sampling sites along an approximately 860-km long south-north transect during the period 2013–2016. Moreover, a dataset contained four climatic factors (mean annual precipitation, mean annual evaporation, annual mean temperature and mean annual dryness index) and five local factors (altitude, slope gradient, land use, clay content and soil organic carbon) of each sampling site was obtained. In this study, three WAL indices (WAL-T (the thickness of WAL), WAL-CV (the mean coefficient of variation in SWC within WAL) and WAL-SWC (the mean SWC within WAL)) were used to evaluate the characteristics of WAL. The results showed that with increasing latitude, WAL-T and WAL-CV increased firstly and then decreased. WAL-SWC showed an opposite distribution pattern along the south-north transect compared with WAL-T and WAL-CV. Average WAL-T of the transect was 2.0 m, suggesting intense soil water exchange in the 0.0–2.0 m soil layer in the study area. Soil water exchange was deeper and more intense in the middle region than in the southern and northern regions, with the values of WAL-CV and WAL-T being 27.3% and 4.3 m in the middle region, respectively. Both climatic (10.1%) and local (4.9%) factors influenced the indices of WAL, with climatic factors having a more dominant effect. Compared with multiple linear regressions, pedotransfer functions (PTFs) from artificial neural network can better estimate the WAL indices. PTFs developed by artificial neural network respectively explained 86%, 81% and 64% of the total variations in WAL-T, WAL-SWC and WAL-CV. Knowledge of WAL is crucial for understanding the regional water budget and evaluating the stable soil water reserve, regional water characteristics and eco-hydrological processes in the Loess Plateau of China.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits989Downloads367 Comment 0

5. chinaXiv:201903.00239 [pdf]

An experimental study on the influences of water erosion on wind erosion in arid and semi-arid regions

YANG Huimin
Subjects: Geosciences >> Geography

Complex erosion by wind and water causes serious harm in arid and semi-arid regions. The interaction mechanisms between water erosion and wind erosion is the key to further our understanding of the complex erosion. Therefore, in-depth understandings of the influences of water erosion on wind erosion is needed. This research used a wind tunnel and two rainfall simulators to investigate the influences of water erosion on succeeding wind erosion. The wind erosion measurements before and after water erosion were run on semi-fixed aeolian sandy soil configured with three slopes (5°, 10° and 15°), six wind speeds (0, 9, 11, 13, 15 and 20 m/s), and five rainfall intensities (0, 30, 45, 60 and 75 mm/h). Results showed that water erosion generally restrained the succeeding wind erosion. At a same slope, the restraining effects decreased as rainfall intensity increased, which decreased from 70.63% to 50.20% with rainfall intensity increased from 30 to 75 mm/h. Rills shaped by water erosion could weaken the restraining effects at wind speed exceeding 15 m/s mainly by cutting through the fine grain layer, exposing the sand layer prone to wind erosion to airflow. In addition, the restraining effects varied greatly among different soil types. The restraining effects of rainfall on the succeeding wind erosion depend on the formation of a coarsening layer with a crust and a compact fine grain layer after rainfall. The findings can deepen the understanding of the complex erosion and provide scientific basis for regional soil and water conservation in arid and semi-arid regions.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits752Downloads93 Comment 0

6. chinaXiv:201903.00240 [pdf]

Abrupt temperature change and a warming hiatus from 1951 to 2014 in Inner Mongolia, China

MA Long; LI Hongyu; LIU Tingxi
Subjects: Geosciences >> Geography

An abrupt temperature change and a warming hiatus have strongly influenced the global climate. This study focused on these changes in Inner Mongolia, China. This study used the central clustering method, Mann-Kendall mutation test and other methods to explore the abrupt temperature change and warming hiatus in three different temperature zones of the study region based on average annual data series. Among the temperature metrics investigated, average minimum temperature (Tnav) shifted the earliest, followed by average temperature (Tnv) and average maximum temperature (Txav). The latest change was observed in summer (1990s), whereas the earliest was observed in winter (1970s). Before and after the abrupt temperature change, Tnav fluctuated considerably, whereas there was only a slight change in Txav. Before and after the abrupt temperature change, the winter temperature changed more dramatically than the summer temperature. Before the abrupt temperature change, Tnav in the central region (0.322°C/10a) and west region (0.48°C/10a) contributed the most to the increasing temperatures. After the abrupt temperature change, Tnav in winter in the central region (0.519°C/10a) and in autumn in the west region (0.729°C/10a) contributed the most to the temperature increases. Overall, in the years in which temperature shifts occurred early, a warming hiatus also appeared early. The three temperature metrics in spring (1991) in the east region were the first to exhibit a warming hiatus. In the east region, Txav displayed the lowest rate of increase (0.412°C/a) in the period after the abrupt temperature change and before the warming hiatus, and the highest rate of increase after the warming hiatus.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits664Downloads104 Comment 0

  [1 Pages/ 6 Totals]