• Reliability of sleep deprivation-associated spontaneous brain activity and behavior

    分类: 心理学 >> 应用心理学 提交时间: 2017-11-06

    摘要: Recent studies have indicated that sleep deprivation (SD) alters intrinsic low-frequency connectivity in the resting brain, mainly focusing on the default mode network (DMN) and its anticorrelated network (ACN). These networks hold key functions in segregating internally and externally directed awareness. However, far less attention has been paid to investigation of the altered amplitude of these low-frequency fluctuations (ALFF) at the whole-brain level and more importantly by what extent the sleep-deprived resting brain pattern can be reproducible and predict individual behavioral performance. The aim of this study was to characterize more clearly the influence of sleep on the whole brain level of ALFF changes and its relation with the performance of a lexical decision task in the sleep deprivation. Sixteen healthy participants underwent fMRI three times: once after a normal night of sleep in the rested wakefulness (RW) state and two following approximately 24 h of total SD separated by an interval of two weeks (SD1 and SD2). Our behavioral results showed that sleep stabilizes performance whereas two sleep deprivation even at an interval of two weeks consistently deteriorates it. Sleep deprivation attenuated the ALFF mainly in the bilateral orbitofrontal cortex (OFC), bilateral dorsolateral prefrontal cortex (DLPFC) and right inferior parietal lobule (IPL). By contrast, the enhanced ALFF emerged in the left sensorimotor cortex (SMA), visual cortex and left fusiform gyrus. Conjunction analysis of SD1 and SD2 versus the control maps and voxel-wise ICC analysis revealed that these SD induced ALFF changes showed a significantly high reliability (ICC>0.5). Particularly, the attenuation of the right IPL presents a significant negative relation with the behavior performance and can be reproducible for two SD at an interval of two weeks. Our results suggest that ALFF is a stable measure in study of SD, and the right IPL may represent a stable biomarker that responds to sleep loss.