您当前的位置:首页 > 论文浏览

1. chinaXiv:201712.01382 [pdf]

基于多特征融合的金融领域科研合作推荐 研究*

余传明; 龚雨田; 赵晓莉; 安 璐
分类: 图书馆学、情报学 >> 情报学

【目的】科研合作关系是一种重要的社会网络。为了促进科研合作, 提高科研生产率, 对金融领域的科研 合作推荐模型进行研究。【方法】建立金融领域个人、机构和区域三个层面的科研合作网络, 提出一种新的融合 基于邻居节点和基于路径的网络特征的科研合作推荐模型, 并从个人、机构和区域三个层面进行实证检验。【结 果】通过对 2000 年到 2014 年刊载的 68 905 篇金融领域的文章进行分析并构建科研合作网络, 在个人、机构和 区域三个层面上, 基于特征融合的链接预测方法的 AUC 值分别为 84.25%、87.34%和 91.84%, 均高于基于邻居 节点的算法和基于路径的算法的 AUC 值。【局限】在进行训练集和测试集选取的时候只按时间进行切分, 有待 使用更多的切分方式对实验结果进行优化。【结论】本文有助于金融科研领域的个人、机构和区域寻求合作对象, 为进行科研网络的研究以及科研合作推荐的学者提供新的研究方法和思路。

提交时间: 2017-12-05 来自合作期刊:《数据分析与知识发现》 点击量314下载量214 评论 0

2. chinaXiv:201712.01391 [pdf]

基于深度表示学习的跨领域情感分析

余传明; 冯博琳; 安 璐
分类: 图书馆学、情报学 >> 情报学

【目的】通过在标注资源丰富的源领域中学习, 并将目标领域的文档投影到与源领域相同的特征空间中去, 从而解决目标领域因数据量较小难以获得好的分类模型的问题。【方法】选择亚马逊在线购物网站在书籍、DVD 和音乐类目下的中文、英文和日文评论作为实验数据, 在卷积神经网络和结构对应学习的基础上提出跨领域深 度表示模型(CDDRM), 以实现不同领域环境下的知识迁移, 并将其应用到跨领域情感分析任务之中。【结果】实 验结果表明, CDDRM 在跨领域环境下最优的 F 值达到 0.7368, 证明了该模型的有效性。【局限】CDDRM 针对长 文本的跨领域情感分类 F 值仍然有待提升。【结论】知识迁移能够解决监督学习在小数据集上难以获得好的分类 效果的问题, 与传统监督学习的基本假设相比, 它并不要求训练集和测试集服从相同或相似的数据分布。

提交时间: 2017-12-05 来自合作期刊:《数据分析与知识发现》 点击量303下载量202 评论 0

3. chinaXiv:201712.01600 [pdf]

基于多特征融合的金融领域科研合作推荐 研究*

余传明; 龚雨田; 赵晓莉; 安 璐
分类: 图书馆学、情报学 >> 情报学

【目的】科研合作关系是一种重要的社会网络。为了促进科研合作, 提高科研生产率, 对金融领域的科研 合作推荐模型进行研究。【方法】建立金融领域个人、机构和区域三个层面的科研合作网络, 提出一种新的融合 基于邻居节点和基于路径的网络特征的科研合作推荐模型, 并从个人、机构和区域三个层面进行实证检验。【结 果】通过对 2000 年到 2014 年刊载的 68 905 篇金融领域的文章进行分析并构建科研合作网络, 在个人、机构和 区域三个层面上, 基于特征融合的链接预测方法的 AUC 值分别为 84.25%、87.34%和 91.84%, 均高于基于邻居 节点的算法和基于路径的算法的 AUC 值。【局限】在进行训练集和测试集选取的时候只按时间进行切分, 有待 使用更多的切分方式对实验结果进行优化。【结论】本文有助于金融科研领域的个人、机构和区域寻求合作对象, 为进行科研网络的研究以及科研合作推荐的学者提供新的研究方法和思路。

提交时间: 2017-11-30 来自合作期刊:《数据分析与知识发现》 点击量340下载量216 评论 0

4. chinaXiv:201712.01606 [pdf]

基于深度表示学习的跨领域情感分析

余传明; 冯博琳; 安 璐
分类: 图书馆学、情报学 >> 情报学

【目的】通过在标注资源丰富的源领域中学习, 并将目标领域的文档投影到与源领域相同的特征空间中去, 从而解决目标领域因数据量较小难以获得好的分类模型的问题。【方法】选择亚马逊在线购物网站在书籍、DVD 和音乐类目下的中文、英文和日文评论作为实验数据, 在卷积神经网络和结构对应学习的基础上提出跨领域深 度表示模型(CDDRM), 以实现不同领域环境下的知识迁移, 并将其应用到跨领域情感分析任务之中。【结果】实 验结果表明, CDDRM 在跨领域环境下最优的 F 值达到 0.7368, 证明了该模型的有效性。【局限】CDDRM 针对长 文本的跨领域情感分类 F 值仍然有待提升。【结论】知识迁移能够解决监督学习在小数据集上难以获得好的分类 效果的问题, 与传统监督学习的基本假设相比, 它并不要求训练集和测试集服从相同或相似的数据分布。

提交时间: 2017-11-30 来自合作期刊:《数据分析与知识发现》 点击量203下载量138 评论 0

  [1 页/ 4 条记录]