Current Location:home > Browse

1. chinaXiv:202006.00240 [pdf]

Maternal salinity improves yield, size and stress tolerance of Suaeda fruticosa seeds

Syed Z SHAH; Aysha RASHEED; Bilquees GUL; Muhammad A KHAN; Brent L NIELSEN; Abdul HAMEED
Subjects: Geosciences >> History of Geosciences

Shrubby seablite or lani (Suaeda fruticosa Forssk) is a perennial euhalophyte with succulent leaves, which could be planted on arid-saline lands for restoration and cultivated as a non-conventional edible or cash crop. Knowledge about the impacts of maternal saline environment on seed attributes of this important euhalophyte is lacking. This study investigated the effects of maternal salinity on yield, size and stress tolerance of S. fruticosa seeds. Seedlings of S. fruticosa were grown in a green net house under increasing maternal salinity levels (0, 300, 600 and 900 mM NaCl) until seed production. Total yield, size, stress tolerance and germination of the descended seeds under different maternal saline conditions were examined. Plants grown under saline conditions (300, 600 and 900 mM NaCl) produce a substantially higher quantity of seeds than plants grown under non-saline condition (0 mM NaCl). Low maternal salinity (300 mM NaCl) improves seed size. Seeds produced under all maternal salinity levels display a higher tolerance to low temperature (night/day thermoperiod of 10°C/20°C), whereas seeds produced under 300 mM NaCl maternal saline condition show a better tolerance to high temperature (night/day thermoperiod of 25°C/35°C) during germination. Seeds from all maternal saline conditions germinate better in the 12 h photoperiod (12 h light/12 h dark) than in the dark (24 h dark); however, seeds produced from low and moderate maternal saline conditions (300 and 600 mM NaCl) show a higher germination in the dark than those from control and high maternal saline conditions (0 and 900 mM NaCl). In general, maternal salinity is found to improve yield, size and stress tolerance of S. fruticosa seeds.

submitted time 2020-06-22 From cooperative journals:《Journal of Arid Land》 Hits84Downloads33 Comment 0

2. chinaXiv:202005.00087 [pdf]

Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum in the desert of Kuwait

Arvind BHATT; Narayana R BHAT; Afaf AL-NASSER; María M CAR?N; Andrea SANTO
Subjects: Biology >> Botany >> Applied botany

Understanding variability in seed germination among populations is essential for planning an effective germplasm collection for restoration and conservation purposes. The knowledge of germination and dormancy patterns among populations of desert grasses is crucial for determining the potential of the species and populations to be used for restoration and conservation as well as forage production. Variability in seed germination of Panicum turgidum Forssk and Pennisetum divisum (Gmel.) Henr. in the desert of Kuwait was evaluated in different populations in May 2017. Experiment of seed germination (25 seeds and 4 replicates) was conducted for each population at night/day temperatures of 15°C/20°C and 20°C/30°C under the following light condition: continuous darkness or 12 h/12 h light/dark. Results showed that seed masses of both species strongly varied according to their seed provenances, and both species produced heavier seeds in population with a higher soil electrical conductivity. Seed germination percentage considerably varied between two species, and the variation in P. turgidum was greater (17%–49%) than that of P. divisum (72%–93%). Germination percentage in P. turgidum was greater at high temperature (20°C/30°C) than at low temperature (15°C/20°C). However, temperature regimes had no effect on germination percentage of P. divisum seeds. Mean germination time of both species exhibited significant inter-population variability. This result is especially relevant to assure the selection of the best population of each species and the regeneration success of the species. Besides this, inter-population variability also provides valuable information for enhancing our understanding of the mechanisms that regulate seed germination and how they might be related to seed provenance.

submitted time 2020-05-31 From cooperative journals:《Journal of Arid Land》 Hits4007Downloads323 Comment 0

3. chinaXiv:202004.00053 [pdf]

Inter-population variabilities in seed mass and germination of Panicum turgidum and Pennisetum divisum in the desert of Kuwait

Arvind BHATT; Narayana R BHAT; Afaf AL-NASSER; María M CAR?N; Andrea SANTO
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Understanding variability in seed germination among populations is essential for planning an effective germplasm collection for restoration and conservation purposes. The knowledge of germination and dormancy patterns among populations of desert grasses is crucial for determining the potential of the species and populations to be used for restoration and conservation as well as forage production. Variability in seed germination of Panicum turgidum Forssk and Pennisetum divisum (Gmel.) Henr. in the desert of Kuwait was evaluated in different populations in May 2017. Experiment of seed germination (25 seeds and 4 replicates) was conducted for each population at night/day temperatures of 15°C/20°C and 20°C/30°C under the following light condition: continuous darkness or 12 h/12 h light/dark. Results showed that seed masses of both species strongly varied according to their seed provenances, and both species produced heavier seeds in population with a higher soil electrical conductivity. Seed germination percentage considerably varied between two species, and the variation in P. turgidum was greater (17%–49%) than that of P. divisum (72%–93%). Germination percentage in P. turgidum was greater at high temperature (20°C/30°C) than at low temperature (15°C/20°C). However, temperature regimes had no effect on germination percentage of P. divisum seeds. Mean germination time of both species exhibited significant inter-population variability. This result is especially relevant to assure the selection of the best population of each species and the regeneration success of the species. Besides this, inter-population variability also provides valuable information for enhancing our understanding of the mechanisms that regulate seed germination and how they might be related to seed provenance.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits253Downloads134 Comment 0

4. chinaXiv:201912.00009 [pdf]

Effects of temperature and light on seed germination of ephemeral plants in the Gurbantunggut Desert, China: implications for vegetation restoration

CHEN Yanfeng; CAO Qiumei; LI Dexin; LIU Huiliang; ZHANG Daoyuan
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Seed germination is a key transitional stage in plant life cycle and is strongly regulated by temperature and light. Therefore, research on the effects of temperature and light on seed germination is extremely meaningful for vegetation restoration, especially in desert ecosystems. Seeds of 28 ephemeral plants collected from the Gurbantunggut Desert of China were incubated at different temperatures (5°C/1°C, 15°C/5°C, 20°C/5°C, 25°C/10°C and 30°C/15°C) in 12-h light/12-h darkness or continuous darkness regimes, and the responses of seed germination to temperature and light and the germination speed were studied in 2016. Results showed that seed germination percentage of the 28 ephemeral plants significantly differed to temperature and light. We classified the studied plants as the following groups based on their responses to temperature: 1 low temperature responsed plants, 12 moderate temperature responsed plants, 7 high temperature responsed plants, 4 non-responsed plants and 5 plants of no germination. It should be noted that Corispermum lehmannianum Bunge is sensitive to both moderate and high temperatures. There were 4 groups of plant in response to light, i.e., 7 light responsed plants, 10 dark responsed plants, 6 light non-responsed plants and 5 plants of no germination. Based on seed germination speed of the 28 ephemeral plants, we divided them into 4 patterns of germination, i.e., very rapid, moderately rapid, moderate and slow. Combining variations of temperature, precipitation and sand dune types in the study area, we suggested that very rapid and moderately rapid germinated plants could be used to moving sand dunes in early spring during vegetation restoration, moderate germinated plants could be used to semi-fixed sand dunes in late autumn, and slow germinated plants could be used to sand plain in summer. Thus, seedling establishment and vegetation restoration would be improved by considering seed germination characteristics of these ephemeral plants in the Gurbantunggut Desert, China.

submitted time 2019-12-06 From cooperative journals:《Journal of Arid Land》 Hits3047Downloads388 Comment 0

5. chinaXiv:201910.00050 [pdf]

Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China

Jannathan MAMUT; TAN Dunyan; Carol C BASKIN; Jerry M BASKIN
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of –0.05, –0.16, –0.33, –0.56, –0.85 and –1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (–0.05 and –0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at –0.85 and –1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.

submitted time 2019-10-26 From cooperative journals:《Journal of Arid Land》 Hits4167Downloads332 Comment 0

  [1 Pages/ 5 Totals]