按提交时间
按主题分类
按作者
按机构
  • Responses of Amygdalus pedunculata Pall. in the sandy and loamy soils to water stress

    分类: 地球科学 >> 地理学 提交时间: 2020-11-25 合作期刊: 《干旱区科学》

    摘要: Amygdalus pedunculata Pall. is a major species that is widely planted in afforested soils with different textures in the transitional zone between Mu Us Desert and Loess Plateau, China. However, the responses of A. pedunculata to increasing intensity of water stress in different textural soils are not clear. Here, we conducted a soil column experiment to evaluate the effects of different textures (sandy and loamy) on water consumption, water use efficiency (WUE), biomass accumulation and ecological adaptability of A. pedunculata under increasing water stress, i.e., 90% (±5%) FC (field capacity), 75% (±5%) FC, 60% (±5%) FC, 45% (±5%) FC and 30% (±5%) FC in 2018. A. pedunculata grown in the sandy soil with the lowest (30% FC) and highest (90% FC) water contents had respectively 21.3%–37.0% and 4.4%–20.4% less transpiration than those with other water treatments (45%–75% FC). In contrast, A. pedunculata transpiration in the loamy soil decreased with decreasing water content. The magnitude of decrease in transpiration increased with increasing level of water deficit (45% and 30% FC). Mean daily and cumulative transpirations of the plant were significantly lower in the sandy soil than in the loamy soil under good water condition (90% FC), but the reverse was noted under water deficit treatments (45% and 30% FC). Plant height, stem diameter and total biomass initially increased with decreasing water content from 90% to 75% FC and then declined under severe water deficit conditions (45% and 30% FC) in the sandy soil. However, these plant parameters decreased with decreasing water content in the loamy soil. WUE in the sandy soil was 7.8%–12.3% higher than that in the loamy soil, which initially increased with decreasing water content from 90% to 75% FC and then declined under water deficit conditions (45% and 30% FC). The study showed that plant transpiration, biomass production and WUE responded differentially to increasing intensity of water stress in the sandy and loamy soils. The contrasting responses of A. pedunculata to water stress in different textural soils can guide future revegetation programs in the northern region of Chinese Loess Plateau by considering plant adaptability to varying soil and water conditions.

  • Full carbon and greenhouse gas balances of fertilized and nonfertilized reed canary grass cultivations on an abandoned peat extraction area in a dry year

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要:

    Bioenergy crop cultivation on former peat extraction areas is a potential after-use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG-F) and nonfertilized (RCG-C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above- and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation-free trenched plots. Fertilization increased the above- to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m−2 yr−1 in RCG-F, RCG-C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha−1 yr−1 in RCG-F, RCG-C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.

  • Impacts of willow and miscanthus bioenergy buffers on biogeochemical N removal processes along the soil–groundwater continuum

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要:

    In this article, the belowground and aboveground biomass production in bioenergy buffers and biogeochemical N removal processes along the soil–groundwater continuum was assessed. In a sandy loam soil with shallow groundwater, bioenergy buffers of miscanthus and willow (5 and 10 m wide) were planted along a ditch of an agricultural field (AF) located in the Po valley (Italy). Mineral N forms and dissolved organic C (DOC) were monitored monthly over an 18-month period in groundwater before and after the bioenergy buffers. Soil samples were measured for inorganic N, DOC, microbial biomass C (MBC) and N (MBN), and potential nitrate reductase activity (NRA). The results indicated that bioenergy buffers are able to efficiently remove from groundwater the incoming NO3-N (62% – 5 m and 80% – 10 m). NO3-N removal rate was higher when nitrate input from AF increased due to N fertilization. Willow performed better than miscanthus in terms of biomass production (17 Mg DM ha−1 yr−1), fine root biomass (5.3 Mg ha−1) and N removal via harvesting (73 kg N ha−1). The negative nonlinear relationship found between NO3-N and DOC along the soil–groundwater continuum from AF to bioenergy buffers indicates that DOC:NO3-N ratio is an important controlling factor for promoting denitrification in bioenergy buffers. Bioenergy buffers promoted soil microbial functioning as they stimulated plant–microbial linkages by increasing the easily available C sources for microorganisms (as DOC). First, willow and miscanthus promoted high rates of biological removal of nitrate (NRA) along the soil profile. Second, rhizosphere processes activated the soil microbial community leading to significant increases in MBC and microbial N immobilization. Herbaceous and woody bioenergy crops have been confirmed as providing good environmental performances when cultivated as bioenergy buffers by mitigating the disservices of agricultural activities such as groundwater N pollution.