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Abstract

As discussed recently by Hooper and Tait, the singlino-like dark matter in the Minimal Su-

persymmetric Standard Model (MSSM) extended by a singlet Higgs superfield can give a perfect

explanation for both the relic density and the Pamela result through the Sommerfeld-enhanced

annihilation into singlet Higgs bosons (a or h followed by h → aa) with a being light enough to

decay dominantly to muons or electrons. In this work we analyze the parameter space required

by such a dark matter explanation and also consider the constraints from the LEP experiments.

We find that although the light singlet Higgs bosons have small mixings with the Higgs doublets

in the allowed parameter space, their couplings with the SM-like Higgs boson hSM (the lightest

doublet-dominant Higgs boson) can be enhanced by the soft parameter Aκ and, in order to meet

the stringent LEP constraints, the hSM tends to decay into the singlet Higgs pairs aa or hh in-

stead of bb̄. So the hSM produced at the LHC will give a multi-muon signal, hSM → aa → 4µ or

hSM → hh → 4a → 8µ.

PACS numbers: 14.80.Ly,11.30.Pb,95.35.+d
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I. INTRODUCTION

The experiment Pamela has observed an excess of the cosmic ray positron in the energy

range 10-100 GeV [1], which is hard to be explained by the conventional cosmic ray source

[2]. While there may exist some mundane explanations like pulsars [3] and the acceleration

of positron secondaries in cosmic ray acceleration regions [4], the dark matter interpretation

[5, 6] is especially interesting since it may be related to new physics to be probed at the

LHC.

To explain the Pamela excess by the dark matter annihilations, there are some challenges.

First, the dark matter must annihilate dominantly into leptons since Pamela has observed

no excess of anti-protons [1] (However, as pointed in [7], this statement may be not so solid

due to the significant astrophysical uncertainties associated with their propagation). Second,

the explanation of Pamela excess requires an annihilation rate which is too large to explain

the relic abundance if the dark matter is produced thermally in the early universe. To tackle

these difficulties, a new theory of dark matter was proposed in [6]. In this new theory the

Sommerfeld effect of a new force in the dark sector can greatly enhance the annihilation

rate when the velocity of dark matter is much smaller than the velocity at freeze-out in the

early universe, and the dark matter annihilates into light particles which are kinematically

allowed to decay to muons or electrons.

The above fancy idea is hard to realize in the popular Minimal Supersymmetric Standard

Model (MSSM) because there is not a new force in the neutralino dark matter sector to

induce the Sommerfeld enhancement and the neutralino drak matter annihilates largely to

final states consisting of heavy quarks or gauge and/or Higgs bosons [8, 9]. However, as

discussed in [10], in the extension of the MSSM by introducing a singlet Higgs superfield,

the idea in [6] can be realized by the singlino-like neutralino dark matter (hereafter the

singlino-like neutralino is simply called singlino):

(i) The singlino dark matter annihilates to the light singlet Higgs bosons and the relic

density can be naturally obtained from the interaction between singlino and singlet

Higgs bosons;

(ii) The singlet Higgs bosons, not related to electroweak symmetry breaking, can be light

enough to be kinematically allowed to decay dominantly into muons or electrons
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through the tiny mixings with the Higgs doublets;

(iii) The Sommerfeld enhancement needed in the dark matter annihilation for the expla-

nation of Pamela result can be induced by the light singlet Higgs boson (h).

Such an explanation of dark matter requires that the singlet Higgs field has very small

mixing with the Higgs doublets, which implies that the singlino dark matter may remain

hidden and irrelevant to the LHC experiments. However, we note that the singlet extension

of the MSSM has a quite large parameter space and thus the coupling of the light singlet

Higgs (h, a) with the doublet Higgs (the lightest one is called hSM) may be enhanced by

other parameters. For example, through the soft term AκS
3 (S is the singlet Higgs field)

with a large Aκ, a pair of singlet Higgs bosons may sizably couple to a doublet Higgs boson

although the mixing between the singlet and doublet Higgs fields is small. Therefore, this

model may allow for exotic Higgs phenomenology at the LHC.

In this work we study the parameter space allowed by the explanation of Pamela result

plus relic density via Sommerfeld enhancement and also consider the constraints from the

LEP experiments. We find that although the light singlet Higgs bosons have small mixings

with the Higgs doublets, their couplings with the SM-like Higgs boson (hSM) can be enhanced

by the soft parameter Aκ and, in order to meet the stringent LEP constraints, the hSM

tends to decay into the singlet Higgs pairs aa or hh instead of bb̄. This implies that the hSM

produced at the LHC will give a multi-muon signal, hSM → aa→ 4µ or hSM → hh→ 4a→
8µ.

This work is organized as follows. In Sec. II we discuss the Higgs and neutralino sectors

in the singlet extension of the MSSM. In Sec. III we scan the parameter space allowed by

the dark matter explanation and LEP experiments, and discuss the implication on Higgs

phenomenology. Finally, a summery is given in Sec. IV.

II. HIGGS AND NEUTRALINOS IN SINGLET EXTENTION OF MSSM

The Higgs superpotential in the general singlet extension of the MSSM is given by [10]

W = µĤu · Ĥd + λŜĤu · Ĥd + ηŜ +
1

2
µsŜ

2 +
1

3
κŜ3 , (1)

where Ŝ is the singlet Higgs superfield while Ĥu and Ĥd are the doublet Higgs superfields.

The Higgs scalar potential consists of the D-term, the F-term and the soft SUSY-breaking
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term. Since Ŝ is a singlet, the D-term is same as in the MSSM. The F-term from the

superpotential is given by

VF = |µ+ λS|2(|Hu|2 + |Hd|2) + |η + µsS + λHu ·Hd + κS2|2. (2)

The soft SUSY-breaking terms are given by

Vsoft = m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2

+(BµHu ·Hd + λAλ Hu ·HdS + CηS +
1

2
BsµsS

2 +
1

3
κAκ S

3 + h.c.) . (3)

So the Higgs potential reads

V = |µ+ λS|2(|Hu|2 + |Hd|2) + |λHu ·Hd + κS2|2

+
1

4
g2(|Hu|2 − |Hd|2)2 +

1

2
g22|H+

u H
0∗
d +H0

uH
−∗
d |2

+m2
Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2

+(BµHu ·Hd + λAλHu ·HdS + λµsHu ·HdS
∗

+CηS +
1

2
BsµsS

2 +
1

3
κAκ S

3 + κµsS
2S∗ + h.c.) (4)

where g2 = (g21 +g
2
2)/2 with g1 and g2 being respectively the coupling constant of SU(2) and

U(1) in the SM.

After the Higgs fields develop the vevs hu, hd and s, i.e.,

H0
u = hu +

HuR + iHuI√
2

, H0
d = hd +

HdR + iHdI√
2

, S = s+
SR + iSI√

2
(5)

we obtain a 3× 3 mass matrix Mh for CP-even Higgs bosons, a 3× 3 mass matrix Ma for

CP-odd Higgs bosons and a 2× 2 mass matrix Mc for the charged Higgs bosons:

(1) The CP-even Higgs mass matrix in the basis (HuR, HdR, SR) is given by

Mh,11 = g2h2u + cot β [λs(Aλ + κs+ µs) + Bµ] , (6)

Mh,22 = g2h2d + tan β [λs(Aλ + κs+ µs) + Bµ] , (7)

Mh,33 = λ(Aλ + µs)
huhd
s

− λ
µ

s
(h2u + h2d) + κs(Aκ + 4κs+ 3µs)−

Cη

s
, (8)

Mh,12 = (2λ2 − g2)huhd − λs(Aλ + κs+ µs)−Bµ, (9)

Mh,13 = 2λ(µ+ λs)hu − λhd(Aλ + 2κs+ µs), (10)

Mh,23 = 2λ(µ+ λs)hd − λhu(Aλ + 2κs+ µs), (11)
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where tan β = hu/hd. This mass matrix can be diagonalized by a rotation



h1

h2

h3


 = U




HuR

HdR

SR


 (12)

with an orthogonal matrix U . The mass eigenstates are ordered as mh1
< mh2

< mh3
.

In the MSSM limit (λ, η, µs, κ → 0 and h3 ∼ SR) the elements of the first 2 × 2

sub-matrix of U are related to the MSSM angle α as

U11 = cosα , U21 = sinα ,

U12 = − sinα , U22 = cosα . (13)

(2) The CP-odd Higgs mass matrix Ma in the basis (HuI , HdI , SI) is given by

Ma,11 = cot β[λs(Aλ + κs+ µs) + Bµ], (14)

Ma,22 = tan β[λs(Aλ + κs+ µs) + Bµ], (15)

Ma,33 = 4λκhuhd + λ(Aλ + µs)
huhd
s

−λµ
s
(h2u + h2d)− κs(3Aκ + µs)−

Cη

s
− 2Bsµs, (16)

Ma,12 = λs(Aλ + κs+ µs) + Bµ, (17)

Ma,13 = λhd(Aλ − 2κs− µs), (18)

Ma,23 = λhu(Aλ − 2κs− µs). (19)

The diagonalization of this mass matrix can be performed in two steps. The first step

is to rotates into a basis (Ã, G̃, SI) with G̃ being a massless Goldstone mode:



HuI

HdI

SI


 =




cos β − sin β 0

sin β cos β 0

0 0 1







Ã

G̃

SI


 . (20)

Dropping the Goldstone mode, the remaining 2 × 2 mass matrix in the basis (Ã, SI)

is given by

Ma,11 = (tan β + cot β)[λs(Aλ + κs+ µs) + Bµ], (21)

Ma,22 = 4λκhuhd + λ(Aλ + µs)
huhd
s

− λ
µ

s
(h2u + h2d)

−κs(3Aκ + µs)−
Cη

s
− 2Bsµs, (22)

Ma,12 = λ
√
h2u + h2d (Aλ − 2κs− µs). (23)
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It can be diagonalized by an orthogonal 2 × 2 matrix P ′ and the physical CP-odd

states ai are given by (ordered as ma1 < ma2)

a1 = P ′
11Ã+ P ′

12SI = P ′
11(cos βHuI + sin βHdI) + P ′

12SI , (24)

a2 = P ′
21Ã+ P ′

22SI = P ′
21(cos βHuI + sin βHdI) + P ′

22SI , (25)

(3) The charged Higgs mass matrix M± in the basis
(
H+

u , H
+

d

)
is given by

M± =

(
λs(Aλ + κs+ µs) + Bµ+ huhd(

g22
2

− λ2)

)
 cot β 1

1 tan β


 , (26)

which gives one eigenstate H± of mass TrM± and one massless goldstone mode G±:

H±
u = cos βH± − sin βG± ,

H±
d = sin βH± + cos βG± . (27)

(4) The neutralino mass matrix M0 can be read from the Lagrangian

L =
1

2
M1λ1λ1 +

1

2
M2λ

3
2λ

3
2

+µψ0
uψ

0
d + λ(sψ0

uψ
0
d + huψ

0
dψs + hdψ

0
uψs)− (κs+

1

2
µs)ψsψs

+
ig1√
2
λ1(huψ

0
u − hdψ

0
d)−

ig2√
2
λ32(huψ

0
u − hdψ

0
d), (28)

where λ1 is the U(1)Y gaugino and λ32 is the neutral SU(2) gaugino. In the basis

ψ0 = (−iλ1,−iλ2, ψ0
u, ψ

0
d, ψs) we obtains

L = −1

2
ψ0M0(ψ

0)T + h.c., (29)

where

M0 =




M1 0 g1hu√
2

−g1hd√
2

0

M2 −g2hu√
2

g2hd√
2

0

0 −(µ+ λs) −λhd
0 −λhu

2κs+ µs




. (30)

Diagonalizing this mass matrix, one obtains 5 mass eigenstates (ordered in mass)

χ̃0
i = Nijψ

0
j . (31)
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III. EXPLANATION OF PAMELA AND IMPLICATION ON HIGGS DECAYS

In our study the lightest CP-odd neutral Higgs boson a1 is singlet-dominant, while for the

CP-even neutral Higgs bosons the lightest one h1 is singlet-dominant and the next-to-lightest

h2 is doublet-dominant. We use the notation:

a ≡ a1, h ≡ h1, hSM ≡ h2. (32)

As discussed in [10], when the lightest neutralino χ̃0
1 in Eq.(31) is singlino-dominant, it can

be a perfect candidate for the dark matter. As shown in Fig.1, such singlino dark matter

annihilates to a pair of light singlet Higgs bosons followed by the decay h→ aa (h has very

small mixing with the Higgs doublets and thus has very small couplings to the fermions). In

order to decay dominantly into muons, a must be light enough. Further, in order to induce

the Sommerfeld enhancement, h must also be light enough. From the superpotential term

κŜ3 we know that the couplings hχ̃0
1χ̃

0
1 and aχ̃

0
1χ̃

0
1 are proportional to κ. To obtain the relic

density of the dark matter, κ should be O(1).

χ̃0
1

χ̃0
1

h, a

h, a

h

χ̃0
1

χ̃0
1

h, a

h, a

h

FIG. 1: Feynman diagrams for singlino dark matter annihilation where Sommerfeld enhancement

is induced by exchanging h.

Since h, a must be singlet-dominant and χ̃0
1 must be singlino-dominant, this implies small

mixing between singlet and doublet Higgs fields. From the superpotential in Eq.(1) we see

that this means the mixing parameter λ must be small enough. On the other hand, the

smallness of λ is also required by the lightness of h1 and a1 whose masses are approximately

given by

Mh,33 ≃ κs

[
λ(Aλ + µs)

huhd
κs2

− λ
µ

κs2
(h2u + h2d) +

(
Aκ + 4κs+ 3µs −

Cη

κs2

)]
, (33)

Ma,22 ≃ κs

[
λ(Aλ + µs)

huhd
κs2

− λ
µ

κs2
(h2u + h2d)−

(
3Aκ + µs +

Cη

κs2
+

2Bsµs

κs

)]
. (34)

In the following we scan over the parameter space. We modify the package NMSSMTools

[11] and use it in our calculations. As discussed above, λ must be small enough in order to
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get a singlino-dominant χ̃0
1 and singlet-dominant h, a (we checked from our scan that λ must

be smaller than 0.01 in order to get ma < 0.5 GeV and mh < 20 GeV). So in our following

scan we fix λ = 10−3. Further, κ is taken as 0.5, and for the squark sector the soft masses

and the trilinear terms are fixed as 500 GeV. Other parameters vary in the ranges:

−500 GeV < C, µ, µs, B, Aλ, M1, M2 < 500 GeV

−(500 GeV)2 < η < (500 GeV)2, s < 500 GeV, 2 < tan β < 40. (35)

In order to get small Mh,33 and Ma,22, the third terms in Eqs.(33,34), which are not sup-

pressed by a small λ, must also be small. Therefore, in our scan we require parameters Aκ

and Bs to be in the ranges:

Aκ ∈
(
−4κs− 3µs +

Cη

κs2

)
± 20GeV, (36)

2Bsµs ∈
(
−3Aκκs− µsκs−

Cη

s

)
± (3GeV)2 (37)

In addition, we consider the following constraints:

(i) The constraints from the LEP experiments, which include the LEP1 bound on invisible

Z decay and the LEP2 direct searches for Higgs bosons;

(ii) ma1 < 0.5 GeV;

(iii) The singlino-like χ̃0
1 to give the dark matter relic density Ωχ̃0

1
h2 in the range 0.01-0.2,

which can be calculated from the approximate formula [10]

Ωχ̃0
1
h2 ∼ 0.1×

(
0.5

κ

)2 ( mχ0

200GeV

)2

. (38)

To calculate the Sommerfeld enhancement we follow [6] to numerically solve the Schrödinger

equation

− 1

2M

d2

dr2
χ+ V (r)χ =

k2

2M
χ (39)

with the boundary condition (r → ∞)

χ(r) → sin(kr + δ), (40)

where M and k are respectively the mass and momentum of the dark matter particle. V (r)

is the Yukawa potential induced by exchanging h and is given by

V (r) = −κ2

2π

e−mhr

r
. (41)
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The Sommerfeld enhancement is then given by

T =

∣∣∣∣∣
dχ

dr
(0)

k

∣∣∣∣∣

2

. (42)

The survived points are displayed in different planes in Figs.2-6. We see from Fig.2 that

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

ma (GeV)

a → gg
a → µµ
a → ss

B
ra

n
ch

in
g

 R
at

io

FIG. 2: The scatter plots showing the decay branching ratios a → µ+µ− (muon), a → gg (gluon)

and a → ss̄ (s-quark) versus ma for λ = 10−3.

in the range 2mµ < ma < 2mπ, a decays dominantly into muons. From Fig.3 it is clear that

h can be as light as a few GeV, which is light enough to induce the necessary Sommerfeld

enhancement as shown in Fig.4. In the calculation of the Sommerfeld enhancement, we

assumed the dark matter move with a velocity 150 km/s.

The fit to Pamela result has been given in [10]. As shown in Table I in [10], for the

parameter space in Figs.2-4 with 2mµ < ma < 2mπ and mh as light as a few GeV (so

the Sommerfeld enhancement factor is large enough), the Pamela positron excess can be

naturally explained.

In Fig.5 we show the branching ratios of hSM decays. We see that in the allowed parameter

space hSM tends to decay into aa or hh instead of bb̄. This can be understood as following.

The MSSM parameter space is stringently constrained by the LEP experiments if hSM is

relatively light and decays dominantly to bb̄, and to escape such stringent constraints hSM

tends to have exotic decays into aa or hh. As a result, the allowed parameter space tends to
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FIG. 3: Same as Fig.2, but showing mh and mhSM
versus ma.
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FIG. 4: Same as Fig.2, but showing the Sommerfeld enhancement factor induced by h.

favor a large Aκ, as shown in Fig.6, which greatly enhances the couplings hSMaa and hSMhh

through the soft term κAκS
3 although S has a small mixing with the doublet Higgs bosons.

Such an enhancement can be easily seen. Take the coupling hSMhh as an example. The soft

term κAκS
3 gives a term κAκS

3
R which then gives the interaction κAκ U

2
13U23 hSMhh because

SR = U13h1 + U23h2 + U33h3 with h1 ≡ h and h2 ≡ hSM (see Eqs.12 and 32). Although the
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FIG. 5: Same as Fig.2, but showing the branching ratio of hSM decays. The ’◦’ (blue), ’×’ (green)

and ’+’ (red) denote the branching ratios of hSM → aa, hSM → hh and hSM → bb̄, respectively.

10 2

10 3

10 4

0.5 0.6 0.7 0.8 0.9 1

Br(hSM→aa, hh)

|A
κ|

FIG. 6: Same as Fig.2, but showing |Aκ| versus the branching ratio of hSM → aa, hh.

mixing U2
13U23 is small for a small λ, a large Aκ can enhance the coupling hSMhh.

The SM-like Higgs boson hSM will be intensively searched at the LHC and its dominant

decay mode in the MSSM is bb̄. In the singlet extension of the MSSM, its dominant decay

mode may be changed to aa or hh, as shown in our above results. Such new decay modes
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will give a multi-muon signal for hSM at the LHC, i.e., hSM → aa → 4µ or hSM → hh →
4a→ 8µ. So the phenomenology of hSM will be quite different from the MSSM predictions.

Finally, we make some remarks regarding our results:

(1) The recent D0 search for h → aa → 4µ or 2µ2τ channel obtained null results, which

constrained the parameter space for the CP-odd Higgs a in the mass range of 3.6-9.5

GeV [12]. But they do not constrain the parameter space considered in our analysis

because we considered a much lighter CP-odd Higgs a with a mass below 0.5 GeV.

Also, as pointed in [10], such a light a is allowed by Υ(3s) → γa → γµ+µ− [13] and

K+ → π+a→ π+µ+µ− [14] because in our scenario a is over dominated by singlet.

(2) In the allowed parameter space displayed in our results, the mass of the SM-like Higgs

boson hSM is rather below its theoretical upper bound (about 135 GeV in the MSSM).

The reason is that, in order to push up its mass, the loop effects of heavy stops are

needed ( note that in the singlet extension the tree-level upper bound can be enhanced

by a term proportional to λ, which is very small in our scenario). In our calculations

the soft mass parameters in the squark sector are fixed to be 500 GeV and hence the

stops are not heavy enough to push the mass of hSM up to 135 GeV. Of course, we can

choose heavy stops to push up the mass of hSM , in which case the allowed parameter

space displayed in our results (with a relatively light hSM decaying dominantly into

aa or hh) can still survive.

(3) For the specified singlet extensions like nMSSM and NMSSM [15], the explanation

of Pamela and relic density through Sommerfeld enhancement is not possible. The

reason is that the parameter space of such models is stringently constrained by various

experiments and dark matter relic density [16], and, as a result, the neutralino dark

matter may explain either the relic density or Pamela, but impossible to explain both

via Sommerfeld enhancement [17]. For example, in the nMSSM various experiments

and dark matter relic density constrain the neutralino dark matter particle in a narrow

mass range [16], which is too light to explain Pamela.
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IV. SUMMARY

The singlino-like dark matter in the MSSM extended by a singlet Higgs superfield can

give a perfect explanation for both the relic density and the Pamela result through the

Sommerfeld-enhanced annihilation into singlet Higgs bosons (a or h followed by h→ aa) with

a being light enough to decay dominantly to muons. In this work we analyzed the parameter

space allowed by such a dark matter explanation and also considered the constraints from

the LEP experiments. We found that although the light singlet Higgs bosons have small

mixings with the Higgs doublets in the allowed parameter space, their couplings with the

SM-like Higgs boson hSM can be enhanced by the soft parameter Aκ and, in order to

meet the stringent LEP constraints, the hSM tends to decay into the singlet Higgs pairs

aa or hh instead of bb̄, which will give a multi-muon signal for hSM produced at the LHC,

hSM → aa→ 4µ or hSM → hh→ 4a→ 8µ.
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