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Abstract

We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We
show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries,
in d = 4 N = 4 super Yang-Mills theory, d = 3 N = 2 super Chern-Simons-matter theory, and
d = 3 N = 6 Aharony-Bergman-Jafferis-Maldacena theory. We not only show this using infinite
straight lines and circles as examples, but also we give proofs for general curves. We attribute this
to the conflicts of reality conditions of the spinors. However, spacelike Wilson loops do exist in
Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS
Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The
result is reasonable in view of the AdS/CFT correspondence.
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1 Introduction

Supersymmetric Wilson loops play an important role in the AdS/CFT correspondence, as they are

dual to fundamental strings or membranes in the bulk string/M theory. In the AdS5/CFT4 corre-

spondence, type IIB string theory in AdS5×S5 spacetime is dual to d = 4 N = 4 super Yang-Mills

(SYM) theory [1–3]. There are 1/2 BPS Wilson loops in d = 4 N = 4 SYM theory, and they are

supposed to be dual to worldsheets of fundamental strings in type IIB string theory [4, 5]. Similarly,

in the AdS4/CFT3 correspondence, M-theory in AdS4×S7/Zk spacetime, or type IIA string theory

in AdS4×CP3 spacetime, is dual to d = 3 N = 6 super Chern-Simons-matter (SCSM) theory with

2



levels (k,−k) and gauge group U(N)×U(N), which is known as Aharony-Bergman-Jafferis-Maldacena

(ABJM) theory [6]. In ABJM theory there are 1/6 BPS Wilson loops [7–9], which are dual to smeared

fundamental strings in type IIA string theory [7]. This kind of 1/6 BPS Wilson loops in ABJM theory

are closely related to the 1/2 BPS Wilson loops in N = 2 SCSM theory proposed in [10]. They

are constructed solely by bosonic fields, and we will call them Gaiotto-Yin (GY) type Wilson loops.

There are also 1/2 BPS Wilson loops in ABJM theory that are dual to the simplest fundamental

strings in type IIA string theory [11]. There are fermionic fields in such loops, and we will call them

Drukker-Trancanelli (DT) type Wilson loops.

In this paper we revisit the Wilson loops in the AdS/CFT correspondence. We find that in

Minkowski spacetime, there is no BPS spacelike Wilson loop. This arises from conflicts of reality

conditions of spinors. We first show this using infinite straight lines and circles as examples. Then

we give proofs that in Minkowski spacetime BPS Wilson loops along general curves are necessarily

timelike or null. The proofs are general for Wilson loops in d = 4 N = 4 SYM theory, d = 3 N = 2

SCSM theory, and GY type and DT type Wilson loops in ABJM theory. However, for the Euclidean

version of the AdS/CFT correspondence, there is another story. The reality conditions of the spinors

are lost in the Wick rotation, and the conflicts in Minkowski spacetime disappear in Euclidean space.

Then we can have BPS Wilson loops along spacelike curves.

The rest of this paper is organized as follows. In Section 2 we discuss Wilson loops along infinite

straight lines and circles in Minkowski spacetime. We show that there are timelike and null BPSWilson

loops, but there are no spacelike ones. In Section 3 we present the case in Euclidean space. We show

that spacelike BPS Wilson loops along infinite straight lines and circles are allowed in Euclidean space.

In Section 4, we give general proofs that BPS Wilson loops in Minkowski spacetime are necessarily

timelike or null, but not spacelike. We end with conclusion and discussion in Section 5. In Appendix A

we review the definition of Majorana spinors in various dimensions. In Appendix B we discuss the

consistency of constraints for Majorana spinors. In Appendix C and D, there are spinor conventions

in d = 3 Minkowski spacetime and Euclidean space, respectively.

2 Straight lines and circles in Minkowski spacetime

In this section we consider the BPS Wilson loops along infinite straight lines and circles in several

supersymmetric conformal field theories in Minkowski spacetime. Thanks to the conformal symmetry,

it is enough to consider Wilson loops along the timelike infinite straight line xµ(τ) = τδ
µ
0 , null line

xµ(τ) = τ(δµ0 + δ
µ
1 ) and spacelike line xµ(τ) = τδ

µ
1 . There are conformal transformations that map

infinite straight lines to circles.

2.1 d=4 N=4 SYM theory

We use the d = 10 N = 1 SYM theory formalism. The supersymmetry (SUSY) transformation of the

bosonic fields is

δǫAµ = λ̄γµǫ, δǫφI = λ̄γIǫ. (2.1)
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Here Aµ with µ = 0, 1, 2, 3 is a four-dimensional vector, φI with I = 4, · · · , 9 are four-dimensional

scalars, λ is the fermionic field, and λ̄ = λ†γ0. The symbols γµ and γI are ten-dimensional gamma

matrices, and ǫ is the SUSY transformation parameter. Also λ and ǫ are ten-dimensional Weyl-

Majorana spinors.

One may define the Wilson loop [4, 5]

W = P exp

[

ig

∫

dτ
(

Aµẋ
µ + φIy

I |ẋ|
)

]

, (2.2)

with P denoting path-ordering operation.

For a timelike infinite straight line one may choose

xµ = τδ
µ
0 , yI = δI4 . (2.3)

Then, δǫW = 0 leads to

γ04ǫ = ǫ. (2.4)

The choice of yI in (2.3) is consistent with the fact that (γ04)
2 = 1. From analyses in Appendix B,

γ04 is a consistent constraint matrix for a Majorana spinor in d = 10 Minkowski spacetime. Thus it is

a timelike 1/2 BPS Wilson loop.

Also one may choose a null infinite straight line xµ = τ(δµ0 + δ
µ
1 ). In this case |ẋ| = 0, the yI term

vanishes, and the Wilson loop (2.2) becomes

W = P exp

(

ig

∫

dτAµẋ
µ

)

. (2.5)

Now δǫW = 0 leads to

γ01ǫ = ǫ. (2.6)

This is also legal, and it is a null 1/2 BPS Wilson loop.

To get a spacelike Wilson loop we choose

xµ = τδ
µ
1 , yI = iδI4 . (2.7)

The constraint from δǫW = 0 now becomes

γ14ǫ = iǫ. (2.8)

The choice of yI in (2.7) is consistent with the fact that (γ14)
2 = −1. From Appendix B it is illegal

because it contradicts the reality conditions of Majorana spinors in d = 10 Minkowski spacetime. So

there is no spacelike 1/2 BPS Wilson loop along an infinite straight line in N = 4 SYM theory in

d = 4 Minkowski spacetime. Since the d = 4 N = 4 SYM theory is a superconformal theory and an

infinite straight line can be mapped to a circle by an appropriate conformal transformation, there is

no spacelike 1/2 BPS Wilson loop along a circle either.1

1Similar consideration appeared in [12], while clear conclusion was lacked there.
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2.2 d=3 N=2 SCSM theory

We consider the d = 3 N = 2 SCSM theory that has a gauge field Aµ, a complex scalar φ and

a Dirac spinor ψ. It is also a superconformal theory, and one can write a general superconformal

transformation as

δχAµ = −
2π

k
(φψ̄γµχ+ χ̄γµψφ̄),

δχφ = iχ̄ψ, δχφ̄ = iψ̄χ, (2.9)

with χ = θ + xµγµϑ, χ̄ = θ̄ − ϑ̄xµγµ, and θ, ϑ being constant Dirac spinors. The θ, θ̄ terms are the

Poincaré SUSY transformations, and ϑ, ϑ̄ terms are conformal SUSY transformations. The trans-

formations δχψ and δχψ̄ will not be used, and so we will not bother to write them out. Note that

Aµ = A
†
µ, φ̄ = φ†, and the SUSY transformation preserves these relations δχAµ = δχA

†
µ, δχφ̄ = δχφ

†.

The 1/2 BPS Wilson loop in N = 2 SCSM theory was found in [10], and we first give a short

review in this subsection. One can define the 1/2 BPS Wilson loop as

W = P exp

(

−i

∫

dτA(τ)

)

,

A = Aµẋ
µ +

2π

k
mφφ̄|ẋ|. (2.10)

One can consider the timelike straight line xµ = τδ
µ
0 . For the Poincaré SUSY transformation

invariance of W , i.e. δθA = 0, one gets

γ0θ = imθ, θ̄γ0 = imθ̄. (2.11)

The second equation is just

γ0θ̄ = −imθ̄. (2.12)

Since the eigenvalues of γ0 are ±i, for θ 6= 0 one can only have m = ±1. One can choose m = 1

without loss of generality. Thus one gets

γ0θ = iθ, γ0θ̄ = −iθ̄. (2.13)

They are compatible, since they are just the complex conjugates of each other. It is similar for the

conformal SUSY transformation. So one gets a 1/2 BPS Wilson loop along a timelike infinite straight

line.

We may choose a null infinite straight line xµ = τ(δµ0 + δ
µ
1 ). In this case |ẋ| = 0, the m term

vanishes, and (2.10) becomes

W = P exp

(

−i

∫

dτAµẋ
µ

)

, (2.14)

and now the Poincaré SUSY transformation δθW = 0 leads to

γ2θ = −θ, γ2θ̄ = −θ̄, (2.15)
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which are compatible. It is similar for the conformal SUSY. We have a 1/2 BPS Wilson loop along a

null infinite straight line.

Then we consider the Wilson loop (2.10) along a spacelike infinite straight line xµ = τδ
µ
1 . For the

Poincaré SUSY transformation invariance of W , we get

γ1θ = imθ, γ1θ̄ = −imθ̄. (2.16)

The eigenvalues of γ1 are ±1, and without loss of generality we choose m = −i. Thus we obtain

γ1θ = θ, γ1θ̄ = −θ̄. (2.17)

Note that they are not compatible. It is similar for conformal SUSY. So we conclude that there is

no 1/2 BPS Wilson loop along a spacelike infinite straight line in N = 2 SCSM theory. There is

conformal transformation that turns a spacelike infinite straight line into a circle, and so there is no

1/2 BPS Wilson loop along a spacelike circle either.

2.3 ABJM theory

The ABJM theory is an N = 6 SCSM theory, and it was constructed in [6]. ABJM theory has

U(N)×U(N) gauge symmetry, and the gauge fields are Aµ and Âµ respectively. The complex scalar

φI and Dirac spinor ψI are in (N, N̄ ) bifundamental representation, and so φ̄I = φ
†
I and ψ̄I = (ψI)†

are in the (N̄ ,N) representation. We have used I, J,K,L, · · · = 1, 2, 3, 4 as indices of the SU(4)

R-symmetry. A general superconformal transformation of ABJM theory is [13–16]

δχAµ =
2π

k

(

φI ψ̄Jγµχ
IJ + χ̄IJγµψ

J φ̄I
)

,

δχÂµ =
2π

k

(

ψ̄JγµφIχ
IJ + χ̄IJ φ̄

Iγµψ
J
)

,

δχφI = iχ̄IJψ
J , δχφ̄

I = iψ̄Jχ
IJ , (2.18)

δχψ
I = γµχIJDµφJ + ϑIJφJ −

2π

k
χIJ

(

φJ φ̄
KφK − φK φ̄

KφJ
)

−
4π

k
χKLφK φ̄

IφL,

δχψ̄I = −χ̄IJγ
µDµφ̄

J + ϑ̄IJ φ̄
J +

2π

k
χ̄IJ

(

φ̄JφK φ̄
K − φ̄KφK φ̄

J
)

+
4π

k
χ̄KLφ̄

KφI φ̄
L,

with χIJ = θIJ + xµγµϑ
IJ and χ̄IJ = θ̄IJ − ϑ̄IJx

µγµ. The definitions of covariant derivatives are

DµφJ = ∂µφJ + iAµφJ − iφJ Âµ,

Dµφ̄
J = ∂µφ̄

J + iÂµφ̄
J − iφ̄JAµ. (2.19)

Also θIJ , θ̄IJ and ϑIJ , ϑ̄IJ are Dirac spinors with constraints

θIJ = −θJI, (θIJ)∗ = θ̄IJ , θ̄IJ =
1

2
ǫIJKLθ

KL,

ϑIJ = −ϑJI , (ϑIJ)∗ = ϑ̄IJ , ϑ̄IJ =
1

2
ǫIJKLϑ

KL. (2.20)

The ǫIJKL symbole is totally antisymmetric with ǫ1234 = 1. Like the N = 2 SCSM theory, the θ, θ̄

terms is Poincaré SUSY transformation, and ϑ, ϑ̄ terms is conformal SUSY transformation. Note that

we have δχAµ = δχA
†
µ, δχÂµ = δχÂ

†
µ, δχφ̄

I = δχφ
†
I , and δχψ̄

I = δχψ
†
I .
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2.3.1 1/6 BPS Wilson loop

The 1/6 BPS Wilson loop along an infinite straight line is the GY type Wilson loop. It was constructed

in [7–9], and there was a careful analysis of reality conditions for the spinors θIJ and θ̄IJ in [9]. It

is closely related to the Wilson loop constructed in [10], which we have reviewed in the previous

subsection. The Wilson loop takes the form

W = P exp

(

−i

∫

dτA(τ)

)

,

A = Aµẋ
µ +

2π

k
M I

JφI φ̄
J |ẋ|. (2.21)

For a timelike straight line xµ = τδ
µ
0 , it can be shown that for

M I
J = diag(−1,−1, 1, 1),

γ0θ
12 = iθ12, γ0θ

34 = −iθ34,

θ13 = θ14 = θ23 = θ24 = 0, (2.22)

γ0ϑ
12 = iϑ12, γ0ϑ

34 = −iϑ34,

ϑ13 = ϑ14 = ϑ23 = ϑ24 = 0,

and here we have δχA = 0, and so δχW = 0. Thus Wilson loop (2.21) along a timelike infinite straight

line is 1/6 BPS.

Similarly, there can be null BPS Wilson loop along xµ = τ(δµ0 + δ
µ
1 ), and the preserved SUSY is

γ2θ
IJ = −θIJ , γ2ϑ

IJ = −ϑIJ . (2.23)

Note that now we get M I
J |ẋ| = 0, and so A = Aµẋ

µ. Thus we have a null BPS Wilson loop. It is not

1/6 BPS, but 1/2 BPS.

On the other hand if we want a spacelike Wilson loop xµ = τδ
µ
1 , for Poincaré SUSY transformation

we have

δθA =
2π

k

[

φK ψ̄J

(

δKI γ1 + iMK
I

)

θIJ + θ̄IJ
(

δIKγ1 + iM I
K

)

ψJ φ̄K
]

. (2.24)

Thus for δθA = 0 we have

γ1θ
IJ = −iM I

Kθ
KJ , γ1θ̄IJ = iMK

I θ̄KJ . (2.25)

In the basis of diagonalized M I
J = mIδ

I
J , we get

γ1θ
IJ = −imIθ

IJ , γ1θ̄IJ = imI θ̄IJ , (2.26)

with no index summations on the right hand sides of the two equations. Note that the eigenvalues of

γ1 are ±1. Without loss of generality we may suppose θ12 6= 0 and get

γ1θ
12 = θ12. (2.27)
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Using (2.20) we get (θ12)∗ = θ34. Then we obtain

γ1θ
34 = θ34. (2.28)

This means that all mI = i. Then (2.26) become

γ1θ
IJ = θIJ , γ1θ̄IJ = −θ̄IJ , (2.29)

which are not consistent. It is similar for conformal SUSY transformation. So there is no 1/6 BPS

spacelike Wilson loop along an infinite straight line. There is no 1/6 BPS spacelike Wilson loop along

a circle either.

Similarly one can construct the 1/6 BPS Wilson loop along xµ = τδ
µ
0

Ŵ = P exp

(

−i

∫

dτÂ(τ)

)

,

Â = Âµẋ
µ +

2π

k
N J

I φ̄IφJ |ẋ|,

N J
I = diag(−1,−1, 1, 1). (2.30)

It is a timelike BPS Wilson loop similar to (2.21), and the only difference is that it involves Âµ instead

of Aµ. It preserves the same SUSY as (2.21). For a null infinite straight line one has Â = Âµẋ
µ, and

it is 1/2 BPS. But still no spacelike 1/6 BPS Wilson loop along a straight line or a circle is allowed.

2.3.2 1/2 BPS Wilson loop

The 1/2 BPS Wilson loop besides the null case was constructed in [11]. Such construction of BPS

Wilson loops was explained elegantly via the Brout-Englert-Higgs mechanism in [17].

One considers the Wilson loop along the timelike infinite straight line xµ = τδ
µ
0

W = P exp

(

−i

∫

dτL(τ)

)

, (2.31)

where L is a supermatrix

L =

(

A f̄1

f2 Â

)

. (2.32)

Here we defined

A = Aµẋ
µ +

2π

k
M I

JφI φ̄
J |ẋ|,

Â = Âµẋ
µ +

2π

k
N J

I φ̄IφJ |ẋ|, (2.33)

f̄1 =

√

2π

k
ζ̄Iψ

I |ẋ|, f2 =

√

2π

k
ψ̄Iη

I |ẋ|.

Note that ζ̄I and ηI are Grassmann even, and so f̄1 and f2 are Grassmann odd. To make W SUSY

invariant2 δχL = 0 is not necessary, and it is enough to require that3 [17]

δχL = ∂τG+ i[L,G], (2.34)

2We assume that all fields tend to zero as τ → ±∞.
3Notice that for the Wilson loops in the previous subsections, such relaxation does not give anything new since the

SUSY transformation of gauge fields and scalar fields does not involve any derivatives.
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for some Grassmann odd matrix

G =

(

ḡ1

g2

)

. (2.35)

Concretely, one needs

δχA = i(f̄1g2 − ḡ1f2),

δχÂ = i(f2ḡ1 − g2f̄1), (2.36)

δχf̄1 = ∂τ ḡ1 + iAḡ1 − iḡ1Â,

δχf2 = ∂τg2 + iÂg2 − ig2A.

As in [11], one can use symmetry to guide the search for a 1/2 BPS Wilson loop. One can break

the SU(4) R-symmetry to U(1)×SU(3) by writing I = (1, i) with i = 2, 3, 4.4 For general ζ̄I , η
I , M I

J

and N J
I , the SU(4) R-symmetry will be broken totally. One wishes to get a BPS Wilson loop with

the global SU(3) subgroup intact, and so one can choose

ζ̄I = ζ̄δ1I , ηI = ηδI1 ,

M I
J = diag(m1,m2,m2,m2), (2.37)

N J
I = diag(n1, n2, n2, n2).

One can suppose the SU(3) invariant constraint

γ0θ
1i = iθ1i, (2.38)

and then from (2.20) one obtains

γ0θ
ij = −iθij, θ̄1iγ0 = iθ̄1i, θ̄ijγ0 = −iθ̄ij, (2.39)

Since ψi and ψ̄i do not appear in f̄1 and f2, to satisfy (2.36) they must not appear in δθA or δθÂ either.

So one has to choose m1 = n1 = −1 and m2 = n2 = 1, and then for Poincaré SUSY transformation

one can get

δθA = −
4πi

k

(

φiψ̄1θ
1i + θ̄1iψ

1φ̄i
)

,

δθÂ = −
4πi

k

(

ψ̄1θ
1iφi + φ̄iθ̄1iψ

1
)

. (2.40)

In order that δθ f̄1 and δθf2 satisfy the form of (2.36), one must choose

γ0η = iη, ζ̄γ0 = iζ̄. (2.41)

Then one gets

δθf̄1 = −i

√

2π

k
ζ̄θ1iD0φi, ḡ1 = −i

√

2π

k
ζ̄θ1iφi,

δθf2 = i

√

2π

k
θ̄1iηD0φ̄

i, g2 = i

√

2π

k
θ̄1iηφ̄

i. (2.42)

4The SU(3) R-symmetry invariance is necessary if one requires that the Wilson loop has simple M2 brane dual in M
theory. If the M2 brane does not stretch in the compactified space S7/Zk except M-theory circle, it would be global SU(3)
R-symmetry. Otherwise the SU(3) R-symmetry would be only local. In Subsection 4.3 we will consider more general
Wilson loops and do not require that the Wilson loops are invariant under any subgroups of the SU(4) R-symmetry.
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One can show that, given

ηζ̄ = −i− γ0, (2.43)

the equations (2.36) are satisfied. It is similar for conformal SUSY transformation. Thus the Wilson

loop (2.31) along a timelike infinite straight line is indeed 1/2 BPS.

For a null infinite straight line |ẋ| = 0, Wilson loop (2.31) becomes trivially the same as discussed

before, and it is 1/2 BPS.

If we want to repeat the above calculation with the spacelike straight line xµ = τδ
µ
1 in Minkowski

spacetime, we will run into dilemma. Now we suppose

γ1θ
1i = θ1i, (2.44)

and then we get

γ1θ
ij = θij, θ̄1iγ1 = −θ̄1i, θ̄ijγ1 = −θ̄ij. (2.45)

Then we cannot choose m1,2, n1,2 to make ψi and ψ̄i do not appear in δθA and δθÂ. So we conclude

that there is no 1/2 BPS Wilson loop with global SU(3) R-symmetry along a spacelike straight line.

There is no 1/2 BPS Wilson loop with global SU(3) R-symmetry along a spacelike circle either.

3 Straight lines and circles in Euclidean space

In the previous section we failed in search of spacelike BPS Wilson loops in Minkowski spacetime

because of contradictions of reality conditions for spinors. However, the reality conditions for spinors

in Minkowski spacetime disappear if we go to Euclidean space by a Wick rotation [18, 19]. In this

section we show explicitly that BPS Wilson loops along spacelike infinite straight lines and circles

exist in Euclidean space.

3.1 d=4 N=4 SYM theory

For the Euclidean d = 4 N = 4 SYM theory the SUSY transformation is formally identical to (2.1),

but now λ and ǫ are no longer Majorana spinors. Explicitly, we have

ǫ 6= ǫc (3.1)

with charge conjugate being defined as (A.4). The Wilson loop is defined formally the same as (2.2),

and for the infinite straight line (2.7), δǫW = 0 still leads to (2.8). It now becomes legal, since ǫ is no

longer a Majorana spinor. There exist conformal transformations that take an infinite straight line to

a circle, and so there are circular BPS Wilson loops in the Euclidean d = 4 N = 4 SYM theory too.

The spacelike BPS Wilson loops are just the ones that were studied in [4, 5, 20,21].

3.2 d=3 N=2 SCSM theory

The Euclidean d = 3 N = 2 SCSM theory has formally identical SUSY transformation as (2.9), but

now ψ̄ is not related to ψ, χ̄ is not related to χ, θ̄ is not related to θ, and ϑ̄ is not related to ϑ.
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Although we have Aµ = A
†
µ, φ̄ = φ†, but we do not have δχAµ = δχA

†
µ or δχφ̄ = δχφ

†. Formally we

can define a Wilson loop as the Minkowski case (2.10), and now for a straight line (2.17) is legal, since

θ̄ and θ are not related. So there are 1/2 BPS Wilson loops along infinite straight lines, as well as

circular 1/2 BPS Wilson loops in Euclidean d = 3 N = 2 SCSM theory. For the Wilson loop along

the line xµ = τδ
µ
1 , the preserved SUSY is

γ1θ = θ, θ̄γ1 = θ̄, γ1ϑ = ϑ, ϑ̄γ1 = ϑ̄. (3.2)

For the circular Wilson loop xµ = (cos τ, sin τ, 0), the preserved SUSY is

ϑ = iγ3θ, ϑ̄ = iθ̄γ3. (3.3)

3.3 ABJM theory

For the Euclidean ABJM theory, it is similar to the above two cases. The superconformal transfor-

mation is formally the same as (2.18), with χIJ = θIJ + xµγµϑ
IJ and χ̄IJ = θ̄IJ − ϑ̄IJx

µγµ. But now

(2.20) becomes

θIJ = −θJI, θ̄IJ =
1

2
ǫIJKLθ

KL,

ϑIJ = −ϑJI , ϑ̄IJ =
1

2
ǫIJKLϑ

KL. (3.4)

Note that the twelve spinors θ[IJ ], ϑ[IJ ] with I, J = 1, 2, 3, 4 are independent Dirac spinors.

For the Wilson loop (2.21) of infinite straight line xµ = τδ
µ
1
5, we can simultaneously impose

γ1θ
12 = θ12, γ1θ

34 = −θ34, (3.5)

since θ12 and θ34 are not related. This means that m1 = m2 = −m3 = −m4 = i, and

θ13 = θ14 = θ23 = θ24 = 0. (3.6)

Using (3.4), we have

θ̄12γ1 = θ̄12, θ̄34γ1 = −θ̄34,

θ̄13 = θ̄14 = θ̄23 = θ̄24 = 0. (3.7)

It is similar for the conformal SUSY transformation parameters ϑIJ and ϑ̄IJ . So there are 1/6 BPS

Wilson loops along infinite straight lines, as well as circular 1/6 BPS Wilson loops in Euclidean ABJM

theory. They were considered in [7–9].

Then we consider the Wilson loop (2.31) in Euclidean space along the line xµ = τδ
µ
1 . We suppose

γ1θ
1i = θ1i, γ1θ

ij = −θij, (3.8)

5Notice that as mentioned in Appendix D, the components of the coordinates xµ are denoted as (x1, x2, x3) in d = 3
Euclidean space.
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and from (3.4) we have

θ̄1iγ1 = θ̄1i, θ̄ijγ1 = −θ̄ij. (3.9)

We choose m1 = n1 = i and m2 = n2 = −i, and for Poincaré SUSY transformation we get

δθA = −
4π

k

(

φiψ̄1θ
1i + θ̄1iψ

1φ̄i
)

,

δθÂ = −
4π

k

(

ψ̄1θ
1iφi + φ̄iθ̄1iψ

1
)

. (3.10)

We have to choose

γ1η = η, ζ̄γ1 = ζ̄, (3.11)

and we get

δθf̄1 =

√

2π

k
ζ̄θ1iDτφi, ḡ1 =

√

2π

k
ζ̄θ1iφi,

δθf2 = −

√

2π

k
θ̄1iηDτ φ̄

i, g2 = −

√

2π

k
θ̄1iηφ̄

i. (3.12)

Then, given

ηζ̄ = i(1 + γ1), (3.13)

1/2 Poincaré SUSY is preserved. It is similar for conformal SUSY transformation. So there is 1/2

BPS Wilson loop along an infinite straight line.

Also there is circular 1/2 BPS Wilson loop along xµ = (cos τ, sin τ, 0). The preserved SUSY is

ϑ1i = iγ3θ
1i, ϑij = −iγ3θ

ij, (3.14)

with i, j = 2, 3, 4. The circular 1/2 BPS Wilson loops have been studied in [11].

4 General curves in Minkowski spacetime

There can be BPS Wilson loops of general curves other than straight lines and circles [22–29]. In this

section we show that in Minkowski spacetime BPS Wilson loops along general curves are necessarily

timelike or null.

4.1 d=4 N=4 SYM theory

Along a general curve xµ(τ) we define the Wilson loop6

W = P exp

[

ig

∫

dτ
(

Aµẋ
µ + φIy

I
)

]

, (4.1)

with yI being a function of τ and transforming in reparameterization as

yI(τ) = yI(τ ′)
dτ ′

dτ
. (4.2)

6Note that the definition of yI here is not the same as that in (2.2). In the present case we have absorbed the factor
|ẋ| in yI for the convenience of subsequent discussions. Similar definitions would happen below for Wilson loops (4.10),
(4.15), and (4.23).

12



We want the Wilson loop to preserve at least one supersymmetry that is parameterized by a ten-

dimensional constant Weyl-Majorana spinor ǫ, and we need

(ẋµγµ + γIy
I)ǫ = 0. (4.3)

Taking complex conjugate of the above equation, we have

(γ∗µẋ
µ + γ∗I y

I∗)ǫ∗ = 0. (4.4)

Since ǫ is a Majorana spinor, we get

(ẋµγµ + γIy
I∗)ǫ = 0. (4.5)

Using (4.3) and (4.5), we have (yI − yI∗)γIǫ = 0. Then we get

0 = [(yI − yI∗)γI ]
2ǫ = (yI − yI∗)(yI − y∗I )ǫ, (4.6)

Since ǫ 6= 0, we see that yI is real

yI∗ = yI . (4.7)

From (4.3) we get

0 = (ẋµγµ + γIy
I)2ǫ = (ẋµẋ

µ + yIyI)ǫ, (4.8)

which means that

ẋµẋ
µ = −yIyI ≤ 0 (4.9)

When yI = 0 for all I, we obtain ẋµẋ
µ = 0 and the curve is null. When yI 6= 0, we have ẋµẋ

µ < 0

and the curve is timelike. So a BPS Wilson loop in d = 4 N = 4 SYM theory in Minkowski spacetime

must be timelike or null.

4.2 d=3 N=2 SCSM theory

Along a general curve xµ(τ) we define the Wilson loop

W = P exp

(

−i

∫

dτA(τ)

)

,

A = Aµẋ
µ +

2π

k
mφφ̄, (4.10)

with m being a function of τ . To make the Wilson loop SUSY invariant we need δχA = 0 for some

nonvanishing χ and χ̄, and we have

ẋµγµχ = imχ, χ̄ẋµγµ = imχ̄. (4.11)

Taking the complex conjugate of the second equation we have

ẋµγµχ = im∗χ. (4.12)
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Then we get (m−m∗)χ = 0. Since χ 6= 0, we have m = m∗. We also have

ẋµẋµχ = (ẋµγµ)
2χ = −m2χ, (4.13)

which means

ẋµẋµ = −m2 ≤ 0. (4.14)

When m 6= 0, the BPS Wilson loop is timelike. When m = 0, the BPS Wilson loop is null. But it

cannot be spacelike.

4.3 ABJM theory

For the ABJM theory in Minkowski spacetime we consider general GY type and DT type BPS Wilson

loops.

4.3.1 GY type Wilson loop

We consider the Wilson loop along a general curve xµ(τ)

W = P exp

(

−i

∫

dτA(τ)

)

,

A = Aµẋ
µ +

2π

k
M I

JφI φ̄
J , (4.15)

withM I
J being a 4×4 complex matrix and dependent on τ . To make the Wilson loop SUSY invariant

we need

ẋµγµχ
IJ = −iM I

Kχ
KJ , χ̄IJ ẋ

µγµ = −iMK
I χ̄KJ , (4.16)

with at least one component of χIJ being nonvanishing. Taking complex conjugate of the second

equation we have

ẋµγµχ
IJ = −iM †I

Kχ
KJ , (4.17)

with the matrix M † being the Hermitian conjugate of M

M
†I
J = (MJ

I)
∗. (4.18)

Then we have

ẋµẋµχ
IJ = (ẋµγµ)

2χIJ = −AI
Kχ

KJ , (4.19)

with A being a positive semi-definite Hermitian matrix

AI
J =M

†I
KM

K
J , (4.20)

whose eigenvalues can only be real positive or vanishing. We have at least one J = J0 that makes

χIJ0 6= 0. Then

AI
Kχ

KJ0 = −ẋµẋµχ
IJ0 .R (4.21)

It is just the eigenvalue equation of A, and −ẋµẋµ is one eigenvalue. Then we have

ẋµẋµ ≤ 0. (4.22)

Thus the BPS GY type Wilson loop can only be timelike or null.
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4.3.2 DT type Wilson loop

We consider the DT type Wilson loop along a general curve xµ(τ)

W = P exp

(

−i

∫

dτL(τ)

)

, L =

(

A f̄1

f2 Â

)

,

A = Aµẋ
µ +

2π

k
M I

JφI φ̄
J , Â = Âµẋ

µ +
2π

k
N J

I φ̄IφJ , (4.23)

f̄1 =

√

2π

k
ζ̄Iψ

I , f2 =

√

2π

k
ψ̄Iη

I ,

with M I
J , N

J
I , ζ̄I and ηI being functions of τ . In literature, all the DT type Wilson loops that

were investigated in [11, 25–29] belong to the class of Wilson loops that have at least local SU(3)

R-symmetry, since this is required if the Wilson loop has simple fundamental string worldsheet dual.

However, we make no such assumption here, and investigate the general case.

In order to make the Wilson loop BPS we need to find ḡ1 and g2 that satisfy (2.36). One of the

consequences is that

ḡ1 =

√

2π

k
ᾱIφI , g2 = −

√

2π

k
βI φ̄

I , (4.24)

with ᾱI and βI being Grassmann odd and having no free color index or spinor index. We also have

ẋµγµχ
IJ = −iM I

Kχ
KJ + iᾱIηJ ,

χ̄IJ ẋ
µγµ = −iMK

I χ̄KJ + iζ̄JβI . (4.25)

Taking the complex conjugate of the second equation we get

ẋµγµχ
IJ = −iM †I

Kχ
KJ + iβ̄IζJ , (4.26)

with ζJ = ζ̄∗J and β̄I = β∗I .

We consider an arbitrary fixed point on the curve, say the point τ = τ0. For the Wilson loop to

be supersymmetric, we should have χIJ
α 6= 0 for some I, J, α. Let us first consider the case with some

χIJ
+ being nonzero.7 From

χ̄IJ =
1

2
ǫIJKLχ

KL, (4.27)

we know that there should be at least one I, such that χI4
+ 6= 0. Then we perform an SU(4) R-

symmetry transformation such that

η4+ = η4− = ζ4+ = 0. (4.28)

Then we have

ẋµγµχ
I4 = −iM I

Jχ
J4,

ẋµγ
β

µ+ χI4
β = −iM †I

Jχ
J4
+ . (4.29)

7Notice that this condition is not affected by the SU(4) R-symmetry transformation.
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Note the first equation applies to both spinor indices, but the second one only applies to index +.

Then we have

ẋµẋ
µχI4

+ = ẋµẋνγ
α

µ+ γ β
να χI4

β = −M I
JM

†J
Kχ

K4
+ . (4.30)

Similar to the discussion of the previous subsection, we see that the curve at τ = τ0 must be timelike

or null

ẋµẋ
µ ≤ 0. (4.31)

Now we are left with the case χIJ
+ = 0 for all I, J . Then for the Wilson loop to be BPS, we should

have χIJ
− 6= 0 for some I, J , which is equivalent to the statement that χI4

− 6= 0 for some I. In this case

we perform an SU(4) R-symmetry transformation such that

η4+ = η4− = ζ4− = 0, (4.32)

from which we get

ẋµγµχ
I4 = −iM I

Jχ
J4,

ẋµγ
β

µ− χI4
β = −iM †I

Jχ
J4
− . (4.33)

Then we have

ẋµẋ
µχI4

− = −M I
JM

†J
Kχ

K4
− . (4.34)

We still have that the curve at τ = τ0 must be timelike or null

ẋµẋ
µ ≤ 0. (4.35)

So we always have ẋµẋµ ≤ 0 at point τ = τ0. Since the point is chosen arbitrarily, we have ẋµẋµ ≤ 0

everywhere on the curve. Thus the DT type BPS Wilson loop in ABJM theory in Minkowski spacetime

must be timelike or null.

5 Conclusion and discussion

We have discussed BPS Wilson loops in several superconformal theories, namely the d = 4 N = 4

SYM theory, the d = 3 N = 2 SCSM theory, and the ABJM theory. We found that in Minkowski

spacetime there exist BPS Wilson loops along timelike and null infinite straight lines, but there are no

BPS Wilson loops along spacelike infinite straight lines or circles. However, in Euclidean space BPS

Wilson loops are allowed for both spacelike infinite straight lines and circles. Furthermore, we give

general proofs that BPS Wilson loops in these superconformal theories in Minkowski space must be

timelike or null.

The result is plausible in view of AdS/CFT correspondence. A one-dimensional BPS Wilson loop

in a superconformal field theory is dual to the two-dimensional worldsheet of the fundamental string

in AdS space. The extra spacelike dimension is just along the AdS radial direction. If the BPS Wilson

loop is timelike or null, then the string worldsheet is also timelike or null. This certainly can only
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happen in Minkowski spacetime. If the BPS Wilson loop is spacelike, then the string worldsheet is also

spacelike. This can only happen in Euclidean space. A spacelike brane, or an S-brane, in Minkowski

spacetime cannot preserve any SUSY [30–33]. This explains why there is no BPS spacelike Wilson

loop in Minkowski spacetime.
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A Majorana spinors in various dimensions

In this appendix we review the definitions of Majorana spinors in various dimensions. We follow

closely the Appendix B of [34], and one can find details therein.

In d-dimensional Minkowski spacetime, the gamma matrices γµ that form Clifford algebra

{γµ, γν} = 2ηµν . (A.1)

Here we use the mostly plus metric ηµν = diag(−,+,+, · · · ). Often, one requires

γ†µ = γ0γµγ0. (A.2)

The matrices ±γ∗µ also satisfy the Clifford algebra, and so there must be similarity transformation

BγµB
−1 = ±γ∗µ ≡ (−)αγ∗µ. (A.3)

Here we use ∗ as complex conjugate, and define α = 0 for the plus sign and α = 1 for minus sign.

Given a Dirac spinor θ one can define the charge conjugate

θc ≡ B−1θ∗. (A.4)

The spinor θc transforms the same way as θ under the Lorentz transformation. When B satisfies

B∗ = B−1, (A.5)

we can impose the reality condition

θ = θc, (A.6)

and get a Majorana spinor. We list the dimensions of Minkowski spacetime in which the Majorana

spinors are allowed and the corresponding α as below.
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d 2 3 4 8 9 10 11 12

α 0 1 0 0 1 1 0 1 0 0

Under a general similarity transformation

γ̃µ = UγµU
−1, (A.7)

we have

θ̃ = Uθ, B̃ = U∗BU−1. (A.8)

To preserve

γ̃†µ = γ̃0γ̃µγ̃0, (A.9)

we need U to be unitary

U † = U−1. (A.10)

One can show that α defined in (A.3), the criterion that reality condition can be imposed (A.5), and

the definition of Majorana spinors (A.6) do not change under this similarity transformation.

B Consistent constraints for Majorana spinors

Constraints on spinors are often used in physics, for example in search of BPS objects in supersym-

metric theories. Sometimes the spinors are Majorana spinors. For a Majorana spinor there is already

the reality condition as reviewed in the previous appendix. Other constraints should be consistent

with this reality condition. As an example, in even dimensions one can impose the chirality constraint

for the Dirac spinors and get Weyl spinors. In four-dimensional Minkowski spacetime, the chirality

constraint of the Weyl spinor is not consistent with the reality condition of the Majorana spinor. So

although there are both Weyl and Majorana spinors, there are no Weyl-Majorana spinors in four-

dimensional spacetime. In this appendix we investigate the consistent constraints of Majorana spinors

in dimensions 2 ≤ d ≤ 12 when Majorana spinors exist.

We first consider d-dimensional Minkowski spacetime. When d = 2k + 2, there are linearly inde-

pendent matrices

γµ1···µn ≡ γ[µ1
· · · γµn], n = 1, 2, · · · , 2k + 2. (B.1)

When there is γ0 in γµ1···µn , we say β = 1, otherwise we say β = 0. It is easy to show that

trγµ1···µn = 0, (γµ1···µn)
2 = (−)β+

n(n−1)
2 . (B.2)

Note that there is no summation of indices in the second equation. Sometimes we want to use matrix

γµ1···µn to construct a constraint and eliminate half of the degree of freedom of a Majorana spinor θ

by the constraint equation8

γµ1···µnθ = iβ+
n(n−1)

2 θ. (B.3)

8Equivalently, we may define the projection operator

P
±
µ1···µn

=
1

2

(

1± (−i)β+
n(n−1)

2 γµ1···µn

)

.
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For a Dirac spinor, it is fine, but for a Majorana spinor there is subtlety. We take complex conjugate

of the equation, use the Majorana condition, and finally get

γµ1···µnθ = (−)nα+β+n(n−1)
2 iβ+

n(n−1)
2 θ. (B.4)

For θ 6= 0, we need

(−)nα+β+
n(n−1)

2 = 1. (B.5)

The solutions are listed below.

β = 1 β = 0

α = 0 n = 2, 3 mod 4 n = 0, 1 mod 4

α = 1 n = 1, 2 mod 4 n = 0, 3 mod 4

When d = 2k + 3, there is the constraint

γ0γ1 · · · γ2k+2 = ±ik, (B.6)

where the sign can be chosen arbitrarily. Then the linearly independent matrices are

γµ1···µn ≡ γ[µ1
· · · γµn], n = 1, 2, · · · , k + 1. (B.7)

The condition for them to be consistent as constraint matrices for a Majorana spinor is the same as

before.

In summary, we list all the possible consistent constraint matrices of Majorana spinors as in Table 1.

Note that when d = 2 there is matrix γ01 and when d = 10 there is matrix γ01···9, which is just that

there are Weyl-Majorana spinors in these dimensions. For Weyl-Majorana spinors, a constraint matrix

must has even number of gamma matrices. In two dimensions, there is no constraint matrix for Weyl-

Majorana spinors. In ten dimensions, the consistent constraint matrices are

γ0i, γ0i1···i5 , γi1···i4 , γi1···i8 . (B.8)

For d-dimensional Euclidean space the metric is δµν = diag(+ + + · · · ), and the Clifford algebra

becomes

{γµ, γν} = 2δµν . (B.9)

The analysis method is the same as before, and we investigate 2 ≤ d ≤ 12 when Majorana spinors

exist. The final results are listed as in Table 2. When d = 8 there is constraint matrix γ1···8 and this

just means the existence of Weyl-Majorana spinors. Now the consistent constraint matrices of the

Weyl-Majorana spinors are

γµ1···µ4 . (B.10)

The constraint equation (B.3) is just the projection equation

P
+
µ1···µn

θ = θ,

or
P

−
µ1···µn

θ = 0.
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d α Consistent constraint matrices

2
0 γ01, γ1

1 γ0, γ01

3 0 γi/γ0i

4 0 γ0i, γ0i1i2 , γi

8 1
γ0, γ0i, γ0i1···i4 , γ0i1···i5 ,

γi1···i3 , γi1···i4 , γ1···7

9 1
γ0/γ1···8, γ0i/γi1···i7 ,

γi1···i3/γ0i1···i5 , γi1···i4/γ0i1···i4

0
γ0i, γ0i1i2 , γ0i1···i5 , γ0i1···i6 , γ01···9,

10
γi, γi1···i4 , γi1···i5 , γi1···i8 , γ1···9

1
γ0, γ0i, γ0i1···i4 , γ0i1···i5 , γ0i1···i8 , γ01···9,

γi1···i3 , γi1···i4 , γi1···i7 , γi1···i8

11 0
γ0i/γi1···i9 , γ0i1i2/γi1···i8 ,

γi/γ0i1···i9 , γi1···i4/γ0i1···i6 , γi1···i5/γ0i1···i5

12 0
γ0i, γ0i1i2 , γ0i1···i5 , γ0i1···i6 , γ0i1···i9 , γ0i1···i10 ,

γi, γi1···i4 , γi1···i5 , γi1···i8 , γi1···i9

Table 1: Consistent constraint matrices for Majorana spinors in Minkowski spacetime. Here the Latin
letters i, i1, i2, · · · vary from 1 to d− 1. Matrices separated by “/” are just the equivalent ones, up to
a possible factor −1 or ±i.

d α Consistent constraint matrices

2 0 γµ

6 1 γµ1···µ3 , γµ1···µ4

7 1 γµ1···µ3/γµ1···µ4

8
0 γµ, γµ1···µ4 , γµ1···µ5 γ1···8

1 γµ1···µ3 , γµ1···µ4 , γµ1···µ7 , γ1···8

9 0 γµ/γµ1···µ8 , γµ1···µ4/γµ1···µ5

10 0 γµ, γµ1···µ4 , γµ1···µ5 , γµ1···µ8 , γµ1···µ9

Table 2: Consistent constraint matrices for Majorana spinors in Euclidean space. Here the Greek
letters µ, µ1, µ2, · · · vary from 1 to d.
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As an application of the above discussions we revisit one problem in Subsection 3.4 of [7]. There

were analyses of the Killing spinors of d = 11 M-theory in the AdS4×S7/Zk spacetime. One needs

(γ47 + γ58 + γ69 + γ456789)ǫ0 = 0, (B.11)

and ǫ0 is a constant Majorana spinor. The authors used γ47, γ58, γ69, and γ456789 as constraint

matrices, but from above discussions this is illegal. We rewrite (B.11) as

(γ4578 + γ4679 + γ5689 + 1)ǫ0 = 0. (B.12)

Because [γ4578, γ4679] = 0, we can use the basis in which

γ4578ǫ0 = s1ǫ0, γ4679ǫ0 = s2ǫ0, (B.13)

and so we get

γ5689ǫ0 = s1s2ǫ0. (B.14)

Here s1,2 are ±1, and so the Majorana spinor ǫ0 takes four configurations

(s1, s2) = (++), (+−), (−+), (−−). (B.15)

Among them only the first one does not satisfy (B.12). So 1/4 supercharges are broken in the orb-

ifolding. We can also proceed with this and analyze the supercharges preserved by fundamental

string (without or with smearing), D2-brane (without or with smearing), and D6-brane in the orbifold

spacetime. The process is similar to what is discussed above and the final conclusions in [7] do not

change.

C Conventions in d=3 Minkowski spacetime

We follow most of the conventions in [35], but there are also some minor differences. In three-

dimensional Minkowski spacetime, we use the coordinates xµ = (x0, x1, x2) and the metric ηµν =

diag(−++). We choose the gamma matrices as

γµ β
α = (iσ2, σ1, σ3), (C.1)

with σ1,2,3 being the Pauli matrices. Note that these are real matrices. They satisfy γµγν = ηµν +

ǫµνργρ, γµγν = ηµν + ǫµνργ
ρ, with ǫµνρ and ǫµνρ being totally antisymmetric and ǫ012 = −ǫ012 = 1.

We have the Grassmann odd spinor θα with the spinor index α = +,−. We define the matrices

ǫαβ =

(

1

−1

)

, ǫαβ =

(

−1

1

)

. (C.2)

Spinor indices are raised and lowered as

Xα = ǫαβXβ, Xα = ǫαβX
β . (C.3)
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Then one can get

Y α
α = −Y α

α . (C.4)

Here X and Y are general objects with spin indices, but they cannot involve ǫαβ , ǫαβ, δ
β
α, ∂α, or ∂

α.

Thus we have

γ
µ
αβ ≡ ǫβγγ

µ γ
α =

(

−1,−σ3, σ1
)

, (C.5)

which are real symmetric matrices. The conventions allow us to define the charge conjugate of spinors

as

θ̄α = θ∗α, θ̄∗α = θα. (C.6)

It is easy to see ¯̄θ = θ. We also define the shorthand

θψ ≡ θαψα, θγµψ ≡ θαγµ β
α ψβ . (C.7)

We have the following useful relations

θψ = ψθ, (θψ)∗ = −ψ̄θ̄, γµθ = −θγµ,

θγµψ = −ψγµθ, (θγµψ)∗ = ψ̄γµθ̄. (C.8)

D Conventions in d=3 Euclidean space

In three-dimensional Euclidean spacetime, we use the coordinates xµ = (x1, x2, x3) and the metric

δµν = diag(+ + +). We choose the gamma matrices as

γµ β
α = (−σ2, σ1, σ3), (D.1)

with σ1,2,3 being the Pauli matrices. Note that (γµ)† = γµ, i.e.
(

γ
µ β
α

)∗

= γ
µ α
β . We have γµγν =

δµν+iǫµνργρ, γµγν = δµν+iǫµνργ
ρ, with ǫµνρ and ǫµνρ being totally antisymmetric and ǫ123 = ǫ123 = 1.

We have the spinor θα that is Grassmann odd. The spinor indices α, β, · · · can be raised or lowered

using ǫαβ or ǫαβ in the same way as the Minkowski case. One can check that γµαβ is symmetric but

not real. Note that there is no Majorana spinor in d = 3 Euclidean space. From θ there can be spinor

θ† satisfying

θ∗α = θ†α, θα∗ = −θ†α,

θ†α∗ = θα, θ†∗α = −θα. (D.2)

Formally we have θ†† = −θ. However, θ† will not be used in this paper. We also have symbol θ̄,

but it is independent and has nothing to do with θ, θ∗ or θ†. There are shorthand the same as the

Minkowski case

θψ ≡ θαψα, θγµψ ≡ θαγµ β
α ψβ . (D.3)

We have the following relations

θψ = ψθ, (θψ)∗ = −ψ†θ†, γµθ = −θγµ,

θγµψ = −ψγµθ, (θγµψ)∗ = −ψ†γµθ†. (D.4)
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