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Abstract

We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We
show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries,
ind=4N = 4 super Yang-Mills theory, d = 3 N' = 2 super Chern-Simons-matter theory, and
d = 3 N = 6 Aharony-Bergman-Jafferis-Maldacena theory. We not only show this using infinite
straight lines and circles as examples, but also we give proofs for general curves. We attribute this
to the conflicts of reality conditions of the spinors. However, spacelike Wilson loops do exist in
Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS
Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The
result is reasonable in view of the AdS/CFT correspondence.
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1 Introduction

Supersymmetric Wilson loops play an important role in the AdS/CFT correspondence, as they are
dual to fundamental strings or membranes in the bulk string/M theory. In the AdS;/CFT,4 corre-
spondence, type IIB string theory in AdSsxS® spacetime is dual to d = 4 N’ = 4 super Yang-Mills
(SYM) theory [1H3]. There are 1/2 BPS Wilson loops in d = 4 N' = 4 SYM theory, and they are
supposed to be dual to worldsheets of fundamental strings in type IIB string theory [4[5]. Similarly,
in the AdS;/CFTj3 correspondence, M-theory in AdSsxS7/Z; spacetime, or type IIA string theory
in AdS;xCP? spacetime, is dual to d = 3 N/ = 6 super Chern-Simons-matter (SCSM) theory with



levels (k, —k) and gauge group U(N)x U (N), which is known as Aharony-Bergman-Jafferis-Maldacena
(ABJM) theory [6]. In ABJM theory there are 1/6 BPS Wilson loops [7H9], which are dual to smeared
fundamental strings in type ITA string theory [7]. This kind of 1/6 BPS Wilson loops in ABJM theory
are closely related to the 1/2 BPS Wilson loops in N/ = 2 SCSM theory proposed in [I0]. They
are constructed solely by bosonic fields, and we will call them Gaiotto-Yin (GY) type Wilson loops.
There are also 1/2 BPS Wilson loops in ABJM theory that are dual to the simplest fundamental
strings in type ITA string theory [I1I]. There are fermionic fields in such loops, and we will call them
Drukker-Trancanelli (DT) type Wilson loops.

In this paper we revisit the Wilson loops in the AdS/CFT correspondence. We find that in
Minkowski spacetime, there is no BPS spacelike Wilson loop. This arises from conflicts of reality
conditions of spinors. We first show this using infinite straight lines and circles as examples. Then
we give proofs that in Minkowski spacetime BPS Wilson loops along general curves are necessarily
timelike or null. The proofs are general for Wilson loops in d = 4 N' = 4 SYM theory, d = 3 N = 2
SCSM theory, and GY type and DT type Wilson loops in ABJM theory. However, for the Euclidean
version of the AdS/CFT correspondence, there is another story. The reality conditions of the spinors
are lost in the Wick rotation, and the conflicts in Minkowski spacetime disappear in Euclidean space.
Then we can have BPS Wilson loops along spacelike curves.

The rest of this paper is organized as follows. In Section Pl we discuss Wilson loops along infinite
straight lines and circles in Minkowski spacetime. We show that there are timelike and null BPS Wilson
loops, but there are no spacelike ones. In Section [3l we present the case in Euclidean space. We show
that spacelike BPS Wilson loops along infinite straight lines and circles are allowed in Euclidean space.
In Section [ we give general proofs that BPS Wilson loops in Minkowski spacetime are necessarily
timelike or null, but not spacelike. We end with conclusion and discussion in Section[Bl In Appendix[A]
we review the definition of Majorana spinors in various dimensions. In Appendix [Bl we discuss the
consistency of constraints for Majorana spinors. In Appendix [C] and [D] there are spinor conventions

in d = 3 Minkowski spacetime and Euclidean space, respectively.

2 Straight lines and circles in Minkowski spacetime

In this section we consider the BPS Wilson loops along infinite straight lines and circles in several
supersymmetric conformal field theories in Minkowski spacetime. Thanks to the conformal symmetry,
it is enough to consider Wilson loops along the timelike infinite straight line z#(7) = 7)), null line
z(7) = 7(65 4 0}) and spacelike line z#(7) = 764'. There are conformal transformations that map

infinite straight lines to circles.

2.1 d=4 N=4 SYM theory

We use the d = 10 N =1 SYM theory formalism. The supersymmetry (SUSY) transformation of the
bosonic fields is
0eAy, = Sque, Sedr = Avyre. (2.1)



Here A, with p = 0,1,2,3 is a four-dimensional vector, ¢; with I = 4,---,9 are four-dimensional
scalars, \ is the fermionic field, and A = Af4°. The symbols Yu and 77 are ten-dimensional gamma
matrices, and € is the SUSY transformation parameter. Also A and e are ten-dimensional Weyl-
Majorana spinors.

One may define the Wilson loop [4,[5]

W = Pexp [ig/dT (Aui* + ¢1yl|x'|) , (2.2)

with P denoting path-ordering operation.

For a timelike infinite straight line one may choose
zt = 76, yl =6t (2.3)

Then, 6.W = 0 leads to

V04€ = €. (2.4)
The choice of y! in (Z3)) is consistent with the fact that (y04)? = 1. From analyses in Appendix [B]
o4 1S a consistent constraint matrix for a Majorana spinor in d = 10 Minkowski spacetime. Thus it is
a timelike 1/2 BPS Wilson loop.

Also one may choose a null infinite straight line z# = 7(8) + 6)'). In this case |#| = 0, the y’ term

vanishes, and the Wilson loop ([2:2]) becomes

W = Pexp <z’g/dTAujc“> . (2.5)
Now 6. W = 0 leads to
Y01€ = €. (2.6)

This is also legal, and it is a null 1/2 BPS Wilson loop.

To get a spacelike Wilson loop we choose
ot =1l oyl =isk. (2.7)
The constraint from §.WW = 0 now becomes

Y14€ = i€ (2.8)

The choice of 3 in (1) is consistent with the fact that (y14)?> = —1. From Appendix [ it is illegal

because it contradicts the reality conditions of Majorana spinors in d = 10 Minkowski spacetime. So

there is no spacelike 1/2 BPS Wilson loop along an infinite straight line in N' = 4 SYM theory in

d = 4 Minkowski spacetime. Since the d = 4 N =4 SYM theory is a superconformal theory and an

infinite straight line can be mapped to a circle by an propriate conformal transformation, there is
1

no spacelike 1/2 BPS Wilson loop along a circle either

!Similar consideration appeared in [12], while clear conclusion was lacked there.



2.2 d=3 N=2 SCSM theory

We consider the d = 3 N' = 2 SCSM theory that has a gauge field A,, a complex scalar ¢ and
a Dirac spinor . It is also a superconformal theory, and one can write a general superconformal

transformation as

9 B _
B A = = (90X + X7000),
8,6 = XY, Oy = iy, (2.9)

with x = 0 + x#v,9, ¥ = 6 — ﬁm“’m, and 6, ¥ being constant Dirac spinors. The 6, § terms are the
Poincaré SUSY transformations, and o, 9 terms are conformal SUSY transformations. The trans-
formations 9% and 6X1,E will not be used, and so we will not bother to write them out. Note that
A, = AL, ¢ = ¢!, and the SUSY transformation preserves these relations OA, = 5XAL, 5X<;_5 = 5X¢Jf.

The 1/2 BPS Wilson loop in N/ = 2 SCSM theory was found in [10], and we first give a short
review in this subsection. One can define the 1/2 BPS Wilson loop as

W= Pexp <—i / dTA(T)> ,

A=A it + Q%m¢q§|x'|. (2.10)

One can consider the timelike straight line a# = 76f). For the Poincaré SUSY transformation

invariance of W, i.e. dp.A = 0, one gets
Y00 = imf, Oyy = imb. (2.11)

The second equation is just

Y08 = —im8. (2.12)

Since the eigenvalues of vy are +i, for # # 0 one can only have m = +1. One can choose m = 1

without loss of generality. Thus one gets
Y08 = i0, Y0 = —if. (2.13)

They are compatible, since they are just the complex conjugates of each other. It is similar for the
conformal SUSY transformation. So one gets a 1/2 BPS Wilson loop along a timelike infinite straight
line.

We may choose a null infinite straight line 2 = 7(8) + d}'). In this case |#| = 0, the m term
vanishes, and (2.I0) becomes

W = Pexp <—i/d7’Aﬂx'“> , (2.14)

and now the Poincaré SUSY transformation dpW = 0 leads to

Y20 = —0, y20 = -0, (2.15)



which are compatible. It is similar for the conformal SUSY. We have a 1/2 BPS Wilson loop along a
null infinite straight line.
Then we consider the Wilson loop (2I0]) along a spacelike infinite straight line 2# = 764". For the

Poincaré SUSY transformation invariance of W, we get

1l = imb, 710 = —imd. (2.16)
The eigenvalues of v; are +1, and without loss of generality we choose m = —i. Thus we obtain
Ml =0, v0=-0. (2.17)

Note that they are not compatible. It is similar for conformal SUSY. So we conclude that there is
no 1/2 BPS Wilson loop along a spacelike infinite straight line in N/ = 2 SCSM theory. There is
conformal transformation that turns a spacelike infinite straight line into a circle, and so there is no

1/2 BPS Wilson loop along a spacelike circle either.

2.3 ABJM theory

The ABJM theory is an NV = 6 SCSM theory, and it was constructed in [6]. ABJM theory has
U(N) x U(N) gauge symmetry, and the gauge fields are A, and flﬂ respectively. The complex scalar
¢ and Dirac spinor ¢y are in (N, N) bifundamental representation, and so ¢! = gb} and 1y = ()1
are in the (N, N) representation. We have used I,.J,K,L,--- = 1,2,3,4 as indices of the SU(4)
R-symmetry. A general superconformal transformation of ABJM theory is [I3HI6]

27 - B -
oAy = - (1057 + X1s70” 8)
o 2Qm - -
oA == (rnorx™ + x1s6"y97)
Spr = ixrsv’, Sy@' =ihyx", (2.18)
2 — - 47 —
S ! =" Dudy + 9"y — ?XU (010" bk — b ™ 0s) — ?XKLQSKQSI%,
- B - — - 2 - - - - 4T - -
Sbr = X1V Dud” + 91567 + & X1J (¢7 prcd™ — " prcd”) + ?XKLgbKQSI(ZSLa
with x// = 61/ + x“’yuvﬂl Jand 17 =015 — 91 Jx#y,. The definitions of covariant derivatives are
Dby = 0y +idAugy —id A,
D,¢" = 08,¢" +iA, ¢’ —ig? A, (2.19)
Also 67, 877 and ¢!/, ¥ are Dirac spinors with constraints
_ . 1
o' = —071, (0") =05, 015 = §EIJKL9KL,
— - 1
9 =9l (WY =9, Oy = 561JKL19KL. (2.20)
The €77k, symbole is totally antisymmetric with ej934 = 1. Like the N/ = 2 SCSM theory, the 6, 0

terms is Poincaré SUSY transformation, and 1, 9 terms is conformal SUSY transformation. Note that

we have 6, A, = 6, Al, 6, A, = 6, Al 6,¢" = 8,¢!, and 6,9 = 6,1

6



2.3.1 1/6 BPS Wilson loop

The 1/6 BPS Wilson loop along an infinite straight line is the GY type Wilson loop. It was constructed
in [79], and there was a careful analysis of reality conditions for the spinors ;; and #/7 in [9]. It
is closely related to the Wilson loop constructed in [10], which we have reviewed in the previous

subsection. The Wilson loop takes the form

W = Pexp <—z’/d7’A(7)> :

. 27 P
A=A, 3k + ?MIJ¢1¢J|33|. (2.21)
For a timelike straight line z# = 76}, it can be shown that for

M!; = diag(—1,-1,1,1),

Vo012 = 012, 4034 = —ip34,

913 = 911 = 973 = 9> = 0, (2.22)
N2 = 912, 93t = —i3,

,1913 _ 1914 _ 1923 _ 1924 — 0,

and here we have 6, A = 0, and so 6, W = 0. Thus Wilson loop (Z.2ZI]) along a timelike infinite straight
line is 1/6 BPS.
Similarly, there can be null BPS Wilson loop along z# = 7(6) + 4}'), and the preserved SUSY is

Aol = g1 9l = g1, (2.23)

Note that now we get M;|@| =0, and so A = A,i*. Thus we have a null BPS Wilson loop. It is not
1/6 BPS, but 1/2 BPS.
On the other hand if we want a spacelike Wilson loop x# = 74}, for Poincaré SUSY transformation

we have
9 - B _
g A = % [ory (081 + M%) 017 + 8ry (5k +iM1 ) w765 . (2.24)

Thus for dg.A = 0 we have
10! = —iM 087 N0 = iME 0. (2.25)
In the basis of diagonalized M!, =m 16§, we get
719[‘] = —imIHU, 01y =im0;ry, (2.26)

with no index summations on the right hand sides of the two equations. Note that the eigenvalues of

v1 are £1. Without loss of generality we may suppose 02 # 0 and get

70'? =0'2. (2.27)



Using (220) we get (6'2)* = #34. Then we obtain
163 = 034, (2.28)

This means that all m; = i. Then (226]) become
0" =0, 01 =01, (2.29)

which are not consistent. It is similar for conformal SUSY transformation. So there is no 1/6 BPS
spacelike Wilson loop along an infinite straight line. There is no 1/6 BPS spacelike Wilson loop along
a circle either.

Similarly one can construct the 1/6 BPS Wilson loop along 2+ = 76

W = Pexp (—i/del(T)) ,

R R 9 _

A=At + %N,hp%m\,

N;”7 = diag(—1,-1,1,1). (2.30)

It is a timelike BPS Wilson loop similar to (Z2I]), and the only difference is that it involves Au instead
of A,. It preserves the same SUSY as (2.2I]). For a null infinite straight line one has A= Audc“, and
it is 1/2 BPS. But still no spacelike 1/6 BPS Wilson loop along a straight line or a circle is allowed.

2.3.2 1/2 BPS Wilson loop

The 1/2 BPS Wilson loop besides the null case was constructed in [II]. Such construction of BPS
Wilson loops was explained elegantly via the Brout-Englert-Higgs mechanism in [17].

One considers the Wilson loop along the timelike infinite straight line z# = 76

mfziump<—i/}hL@q>, (2.31)

:(“4 fl) (2.32)
f2 A

A= Aux“—i— Tt qﬁ]qﬁ | %],

where L is a supermatrix

Here we defined

/\

= A, it + N Tol b g\l (2.33)

fi= \/707/) [z, fa= \/71#177 |Z].

Note that {; and n are Grassmann even, and so f; and f, are Grassmann odd. To make W SUSY

invariantd 0, L = 0 is not necessary, and it is enough to require thatt [17]

5L = 8,G +i[L, G, (2.34)

2We assume that all fields tend to zero as 7 — Fo0.
*Notice that for the Wilson loops in the previous subsections, such relaxation does not give anything new since the
SUSY transformation of gauge fields and scalar fields does not involve any derivatives.



for some Grassmann odd matrix

G- ( . 9 ) , (2.35)

oA =i(fig2 — G1f2),
Sy A =i(fog1 — g2.f1), (2.36)
o f1 = 0:g1 +iAG — igiA,

Concretely, one needs

Sy fo = 0rgs +iAgy —iga A,
As in [I1I], one can use symmetry to guide the search for a 1/2 BPS Wilson loop. One can break
the SU(4) R-symmetry to U(1) x SU(3) by writing I = (1,) with i = 2,3,4 For general 7, n!, M7,
and N IJ, the SU(4) R-symmetry will be broken totally. One wishes to get a BPS Wilson loop with

the global SU(3) subgroup intact, and so one can choose
Cr=Cor 0" =mndi,
M'; = diag(mi,ma, ma, ms), (2.37)
NIJ = diag(n1, n2, n2, n2).
One can suppose the SU(3) invariant constraint
700" =6, (2.38)

and then from (2.20) one obtains

1007 = =it G170 = b1,  Oijy0 = —iby;, (2.39)
Since ¢* and v; do not appear in f; and fa, to satisfy (Z.36]) they must not appear in §y.A or 5o A either.
So one has to choose m; = n; = —1 and my = ny = 1, and then for Poincaré SUSY transformation

one can get

dp A = —% (¢t 0" + 610 ")
SpA = _% (010Y; + GG, . (2.40)

In order that &y f1 and dgf2 satisfy the form of (Z38]), one must choose
Yo =in,  Cyo = iC. (2.41)

Then one gets

= . 27T =51i _ . 27T =51i
0o f1 = —i ?Cal Dogi, g1 = —i ?Cal o,

fom for
dofa =1 %elinD0¢7 g2 =1 %Hlmfﬁ- (2.42)

“The SU(3) R-symmetry invariance is necessary if one requires that the Wilson loop has simple M2 brane dual in M
theory. If the M2 brane does not stretch in the compactified space S”/Zj except M-theory circle, it would be global SU(3)
R-symmetry. Otherwise the SU(3) R-symmetry would be only local. In Subsection 3] we will consider more general
Wilson loops and do not require that the Wilson loops are invariant under any subgroups of the SU(4) R-symmetry.




One can show that, given
n¢ = —i— 0, (2.43)
the equations (Z36]) are satisfied. It is similar for conformal SUSY transformation. Thus the Wilson
loop (Z31)) along a timelike infinite straight line is indeed 1/2 BPS.
For a null infinite straight line |&| = 0, Wilson loop (2.31]) becomes trivially the same as discussed
before, and it is 1/2 BPS.
If we want to repeat the above calculation with the spacelike straight line z# = 76} in Minkowski

spacetime, we will run into dilemma. Now we suppose
Mot = 0", (2.44)

and then we get

’ylﬁij = Gij, éli’)/l = _élia Hij')’l = _Hij- (2.45)

Then we cannot choose my 2, ni 2 to make " and 1); do not appear in dg.A and §pA. So we conclude
that there is no 1/2 BPS Wilson loop with global SU(3) R-symmetry along a spacelike straight line.
There is no 1/2 BPS Wilson loop with global SU(3) R-symmetry along a spacelike circle either.

3 Straight lines and circles in Euclidean space

In the previous section we failed in search of spacelike BPS Wilson loops in Minkowski spacetime
because of contradictions of reality conditions for spinors. However, the reality conditions for spinors
in Minkowski spacetime disappear if we go to Euclidean space by a Wick rotation [I8[19]. In this
section we show explicitly that BPS Wilson loops along spacelike infinite straight lines and circles

exist in Euclidean space.

3.1 d=4 N=4 SYM theory

For the Euclidean d = 4 N' = 4 SYM theory the SUSY transformation is formally identical to (2.1I),

but now A and € are no longer Majorana spinors. Explicitly, we have

€ # € (3.1)

with charge conjugate being defined as (A4]). The Wilson loop is defined formally the same as ([2.2]),
and for the infinite straight line 2.1, 6. W = 0 still leads to (Z8]). It now becomes legal, since € is no
longer a Majorana spinor. There exist conformal transformations that take an infinite straight line to
a circle, and so there are circular BPS Wilson loops in the Euclidean d = 4 N/ = 4 SYM theory too.
The spacelike BPS Wilson loops are just the ones that were studied in [4}[512021].

3.2 d=3 N'=2 SCSM theory

The Euclidean d = 3 N/ = 2 SCSM theory has formally identical SUSY transformation as (Z3]), but
now 1 is not related to 1, Y is not related to x, @ is not related to 6, and ¥ is not related to ¥.

10



Although we have A, = AL, ¢ = ¢!, but we do not have O0yA, = 6XAL or 5X<;_5 = 5X¢T. Formally we
can define a Wilson loop as the Minkowski case (ZI0), and now for a straight line (Z17)) is legal, since
6 and 6 are not related. So there are 1/2 BPS Wilson loops along infinite straight lines, as well as
circular 1/2 BPS Wilson loops in Euclidean d = 3 N/ = 2 SCSM theory. For the Wilson loop along
the line z# = 76/, the preserved SUSY is

")/1(9 = 0, 571 = é, ’)/119 = 79, ﬁ’yl = 19 (3.2)
For the circular Wilson loop z# = (cos 7,sin7,0), the preserved SUSY is
Y= z'739, 1§ = i9_73. (33)

3.3 ABJM theory

For the Euclidean ABJM theory, it is similar to the above two cases. The superconformal transfor-

mation is formally the same as (ZI8), with x!7 = 61/ + 2#v,9!7 and x1; = 015 — 91 2#7,. But now

([220)) becomes

- 1
0! = —071, 01 = §EIJKL9KL,

- 1
qﬂJ:—ﬂ”,q%JziqﬂgﬂKP (3.4)

Note that the twelve spinors 0/ 97 with I, J = 1,2,3,4 are independent Dirac spinors.

For the Wilson loop (ZZI)) of infinite straight line z* = 7|1, we can simultaneously impose

1012 =012, 0% = —p*, (8.5)
since #'? and 63* are not related. This means that m; = ms = —msz = —my = i, and
01 = 9 = 9?3 = 9** = 0. (3.6)

Using (34]), we have

1071 = 12, O34 = 034,

013 = 014 = O3 = 034 = 0. (3.7)
It is similar for the conformal SUSY transformation parameters ¥/ and 9;;. So there are 1/6 BPS
Wilson loops along infinite straight lines, as well as circular 1/6 BPS Wilson loops in Euclidean ABJM

theory. They were considered in [7HI].
Then we consider the Wilson loop ([231)) in Euclidean space along the line z# = 744". We suppose

QY =gl A g — i (3.8)

"Notice that as mentioned in Appendix [D] the components of the coordinates z* are denoted as (z',2% %) in d = 3
Euclidean space.

11



and from (B.4]) we have

O1i71 = 014, iy = —0;5. (3.9)
We choose my = ny =i and mo = no = —i, and for Poincaré SUSY transformation we get
47 - e = —
dp A = T (¢ith10" + 019" ")
o AT, — . L
Sp A = - (10" i + ¢'01,0") . (3.10)

We have to choose
nn=mn¢n=¢ (3.11)

and we get
_ QT — 4. 2T = 4
dof1 = ?CHMDT% g1 = ?Ceh%

21 ~ —; o2 — .
dof2 = —4/ ?le‘?ﬂ)rgbl, g2 = —\/ ?912‘77@5@- (3.12)

n¢ =i(14+m), (3.13)

Then, given

1/2 Poincaré SUSY is preserved. It is similar for conformal SUSY transformation. So there is 1/2
BPS Wilson loop along an infinite straight line.
Also there is circular 1/2 BPS Wilson loop along x# = (cos 7,sin 7,0). The preserved SUSY is

O = i30T = —iys6Y, (3.14)

with 7,7 = 2,3,4. The circular 1/2 BPS Wilson loops have been studied in [I1].

4 General curves in Minkowski spacetime

There can be BPS Wilson loops of general curves other than straight lines and circles [22H29)]. In this
section we show that in Minkowski spacetime BPS Wilson loops along general curves are necessarily

timelike or null.

4.1 d=4 N=4 SYM theory

Along a general curve z#(7) we define the Wilson loopH
W = Pexp [ig/dT (Aua':“ + qS[yI)] , (4.1)

with y! being a function of 7 and transforming in reparameterization as

dr’
I Y
v ) = ()

®Note that the definition of ¢’ here is not the same as that in (). In the present case we have absorbed the factor
|| in y” for the convenience of subsequent discussions. Similar definitions would happen below for Wilson loops (@I0),

[@I5), and (£23).

(4.2)

12



We want the Wilson loop to preserve at least one supersymmetry that is parameterized by a ten-

dimensional constant Weyl-Majorana spinor €, and we need
(@5, +ry")e = 0. (4.3)
Taking complex conjugate of the above equation, we have
(" +7y™)e = 0. (4.4)
Since € is a Majorana spinor, we get
(@ + v1y™)e = 0. (4.5)
Using ([@3) and ([@3]), we have (y' — y’*)vre = 0. Then we get
0=1[(y' —y™)le= (" —y™)yr —yi)e. (4.6)

Since € # 0, we see that 3! is real

y =y’ (4.7)

From (4.3]) we get
0= (&M v, + WIZ/I)QE = (T,a" + ylyj)e, (4.8)

which means that
i, it = —ylyr <0 (4.9)

When y! = 0 for all I, we obtain z,#" = 0 and the curve is null. When y! # 0, we have <0
and the curve is timelike. So a BPS Wilson loop in d = 4 N’ = 4 SYM theory in Minkowski spacetime

must be timelike or null.

4.2 d=3 N=2 SCSM theory

Along a general curve z#(7) we define the Wilson loop
W = Pexp (—i/dT.A(T)) ,
9 _
A= Ait+ %mqﬁqﬁ, (4.10)

with m being a function of 7. To make the Wilson loop SUSY invariant we need d,.A4 = 0 for some

nonvanishing x and y, and we have
aty,x =imy,  xaly, = imyx. (4.11)
Taking the complex conjugate of the second equation we have

'y x = imFx. (4.12)

13



Then we get (m —m*)x = 0. Since x # 0, we have m = m*. We also have

ity = (i',)%x = —m?x, (4.13)

which means
iti, = —m?® <0. (4.14)
When m # 0, the BPS Wilson loop is timelike. When m = 0, the BPS Wilson loop is null. But it

cannot be spacelike.

4.3 ABJM theory

For the ABJM theory in Minkowski spacetime we consider general GY type and DT type BPS Wilson

loops.

4.3.1 GY type Wilson loop

We consider the Wilson loop along a general curve z#(71)

W = Pexp <—i/dT.A(T)> ,
A=A i" + Q%MIJWEJ, (4.15)

with M1 7 being a 4 x 4 complex matrix and dependent on 7. To make the Wilson loop SUSY invariant
we need

ity = =M™, ity = —iM% XK, (4.16)

with at least one component of x!’ being nonvanishing. Taking complex conjugate of the second
equation we have

i rux ! = =M (4.17)
with the matrix MT being the Hermitian conjugate of M
1 *

MY = (Mm7))* (4.18)

Then we have

iugquU = (ﬂb”’}’u)2XU = =A™, (4.19)
with A being a positive semi-definite Hermitian matrix
I I K
Al = M oM%K (4.20)

whose eigenvalues can only be real positive or vanishing. We have at least one J = Jy that makes
x'70 #£ 0. Then
Al o = —gkg 0 R (4.21)

It is just the eigenvalue equation of A, and —#*1, is one eigenvalue. Then we have
i, <O0. (4.22)

Thus the BPS GY type Wilson loop can only be timelike or null.
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4.3.2 DT type Wilson loop

We consider the DT type Wilson loop along a general curve z#(7)

W:Pexp<_¢/d7L(7)>, L:(}‘: ﬁ)

2 - S 2 _
A=At + %M{Nﬁlqﬁ‘], A=At + %N1J¢I¢J, (4.23)

fi= 2%51¢I7 fa=1/ 2%151?7[7

with MIJ, NI‘], ¢; and ! being functions of 7. In literature, all the DT type Wilson loops that
were investigated in [I1L25H29] belong to the class of Wilson loops that have at least local SU(3)
R-symmetry, since this is required if the Wilson loop has simple fundamental string worldsheet dual.
However, we make no such assumption here, and investigate the general case.

In order to make the Wilson loop BPS we need to find g; and gy that satisfy (236]). One of the

2 2T -
g1 =1/ ?54[@, g2 = — ?&(ﬁ], (4.24)

with @’ and 7 being Grassmann odd and having no free color index or spinor index. We also have

consequences is that

Xrgdty, = —iM" ks + 81 (4.25)
Taking the complex conjugate of the second equation we get
. T .5
x“’yMXU — M KXKJ + zﬁIC‘], (4.26)

with ¢/ = 6; and B! = B7.
We consider an arbitrary fixed point on the curve, say the point 7 = 79. For the Wilson loop to
be supersymmetric, we should have %’ # 0 for some I, J, . Let us first consider the case with some

Xi‘] being nonzeroEl From

1
X1J = §€IJKLXKL7 (4.27)

we know that there should be at least one I, such that yI* # 0. Then we perform an SU(4) R-

symmetry transformation such that
np=nt=( =0 (4.28)
Then we have
oyt = =M,
. . 1
iy, Pxht = =Mt (4.29)

"Notice that this condition is not affected by the SU(4) R-symmetry transformation.
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Note the first equation applies to both spinor indices, but the second one only applies to index +.
Then we have

.. “ . J
i, ity = EHE"Y, 1 Yy Bxé‘l = —JWIJMT (I AR (4.30)

Similar to the discussion of the previous subsection, we see that the curve at 7 = 75 must be timelike
or null

it < 0. (4.31)

Now we are left with the case Xi‘] =0 for all 1, .J. Then for the Wilson loop to be BPS, we should
have y!7 # 0 for some I, J, which is equivalent to the statement that x4 # 0 for some I. In this case

we perform an SU(4) R-symmetry transformation such that

ni=nt =¢! =0, (4.32)

from which we get

T = —iM T x4,
. . I
iy, Pxgt = =M (4.33)
Then we have
ity = Ml M KA (4.34)

We still have that the curve at 7 = 7y must be timelike or null
x,ot < 0. (4.35)

So we always have i#1, < 0 at point 7 = 79. Since the point is chosen arbitrarily, we have ##2, < 0
everywhere on the curve. Thus the DT type BPS Wilson loop in ABJM theory in Minkowski spacetime

must be timelike or null.

5 Conclusion and discussion

We have discussed BPS Wilson loops in several superconformal theories, namely the d = 4 N = 4
SYM theory, the d = 3 N' = 2 SCSM theory, and the ABJM theory. We found that in Minkowski
spacetime there exist BPS Wilson loops along timelike and null infinite straight lines, but there are no
BPS Wilson loops along spacelike infinite straight lines or circles. However, in Euclidean space BPS
Wilson loops are allowed for both spacelike infinite straight lines and circles. Furthermore, we give
general proofs that BPS Wilson loops in these superconformal theories in Minkowski space must be
timelike or null.

The result is plausible in view of AdS/CFT correspondence. A one-dimensional BPS Wilson loop
in a superconformal field theory is dual to the two-dimensional worldsheet of the fundamental string
in AdS space. The extra spacelike dimension is just along the AdS radial direction. If the BPS Wilson

loop is timelike or null, then the string worldsheet is also timelike or null. This certainly can only
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happen in Minkowski spacetime. If the BPS Wilson loop is spacelike, then the string worldsheet is also
spacelike. This can only happen in Euclidean space. A spacelike brane, or an S-brane, in Minkowski
spacetime cannot preserve any SUSY [30H33]. This explains why there is no BPS spacelike Wilson

loop in Minkowski spacetime.

Acknowledgments

We would like to thank Bin Chen, Jian-Xin Lu and Zohar Komargodski for valuable discussions.
Special thanks to the anonymous referee for valuable suggestions that there should be proofs that
BPS Wilson loops along general curves in Minkowski spacetime cannot be spacelike. The referee also
provided us with the calculation details of Subsection [4.1] and [£2] and gave us valuable suggestions
about the DT type Wilson loops in ABJM theory. Without the criticism and insistence of the referee
we could not have completed the work. JW would like to thank KIAS and ICTS-USTC for hospitality
during recent visits. The work was in part supported by NSFC Grants No. 11105154, No. 11222549
and No. 11575202. JW also gratefully acknowledges the support of K. C. Wong Education Foundation
and Youth Innovation Promotion Association of CAS (No. 2011016).

A Majorana spinors in various dimensions

In this appendix we review the definitions of Majorana spinors in various dimensions. We follow
closely the Appendix B of [34], and one can find details therein.

In d-dimensional Minkowski spacetime, the gamma matrices 7, that form Clifford algebra
{ W} = 200 (A1)
Here we use the mostly plus metric 7, = diag(—,+,+,---). Often, one requires
7 =070 (A.2)
The matrices +v;, also satisfy the Clifford algebra, and so there must be similarity transformation
By,B~h =47, = ()"} (A3)

Here we use * as complex conjugate, and define o = 0 for the plus sign and a = 1 for minus sign.

Given a Dirac spinor 6 one can define the charge conjugate
6.= B~'o*. (A.4)
The spinor 6, transforms the same way as 6 under the Lorentz transformation. When B satisfies
B*= B!, (A.5)

we can impose the reality condition
0 =90, (A.6)

and get a Majorana spinor. We list the dimensions of Minkowski spacetime in which the Majorana

spinors are allowed and the corresponding « as below.
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d| 2 |3]|4]s|o] 10 |11]12
alolrfofof[1]1]oft]o]o

Under a general similarity transformation

Y = U'YMU_17 (A7)
we have
§=U# B=U*BU . (A.8)
To preserve
AL = Fouo, (A.9)
we need U to be unitary
Ul =uv-t (A.10)

One can show that « defined in ([A.3)), the criterion that reality condition can be imposed ([Af]), and

the definition of Majorana spinors ([A.6]) do not change under this similarity transformation.

B Consistent constraints for Majorana spinors

Constraints on spinors are often used in physics, for example in search of BPS objects in supersym-
metric theories. Sometimes the spinors are Majorana spinors. For a Majorana spinor there is already
the reality condition as reviewed in the previous appendix. Other constraints should be consistent
with this reality condition. As an example, in even dimensions one can impose the chirality constraint
for the Dirac spinors and get Weyl spinors. In four-dimensional Minkowski spacetime, the chirality
constraint of the Weyl spinor is not consistent with the reality condition of the Majorana spinor. So
although there are both Weyl and Majorana spinors, there are no Weyl-Majorana spinors in four-
dimensional spacetime. In this appendix we investigate the consistent constraints of Majorana spinors
in dimensions 2 < d < 12 when Majorana spinors exist.
We first consider d-dimensional Minkowski spacetime. When d = 2k + 2, there are linearly inde-
pendent matrices
Vpzopn = Vs Vun]y M= 12,000, 2k + 2. (B.1)
When there is vp in 7y, ..., » We say 8 = 1, otherwise we say 3 = 0. It is easy to show that
2 n(n-1)
Vg = 05 (Yprogsn)” = ()77 (B.2)
Note that there is no summation of indices in the second equation. Sometimes we want to use matrix
Y1 --un tO construct a constraint and eliminate half of the degree of freedom of a Majorana spinor
by the constraint equatio

n(n—1)

Vgm0 =70, (B.3)

8Equivalently, we may define the projection operator



For a Dirac spinor, it is fine, but for a Majorana spinor there is subtlety. We take complex conjugate

of the equation, use the Majorana condition, and finally get

Vom0 = (—)na+6+n(n{1)iﬁjﬂ(n{l)9. (B.4)
For 6 # 0, we need
(_)na+5+7n(n{1) = 1. (B5)
The solutions are listed below.

a=0|n=2,3mod4 | n=0,1 mod 4
a=1|n=12mod4 | n=0,3 mod4

When d = 2k + 3, there is the constraint

Yoyt - -+ Yoryo = £iF, (B.6)

where the sign can be chosen arbitrarily. Then the linearly independent matrices are

Voropn = Vs * Yun)py M= 1,2, k41 (B.7)

The condition for them to be consistent as constraint matrices for a Majorana spinor is the same as
before.

In summary, we list all the possible consistent constraint matrices of Majorana spinors as in Table[Tl
Note that when d = 2 there is matrix vp; and when d = 10 there is matrix ~g...9, which is just that
there are Weyl-Majorana spinors in these dimensions. For Weyl-Majorana spinors, a constraint matrix
must has even number of gamma matrices. In two dimensions, there is no constraint matrix for Weyl-

Majorana spinors. In ten dimensions, the consistent constraint matrices are

Y0is Y0iy--i5s Vig---igs Vip---ig- (BS)

For d-dimensional Euclidean space the metric is 0,,, = diag(4+ 4+ 4 ---), and the Clifford algebra

becomes
{’Y;u 71/} = 25;UJ- (Bg)

The analysis method is the same as before, and we investigate 2 < d < 12 when Majorana spinors
exist. The final results are listed as in Table 2l When d = 8 there is constraint matrix ;... and this
just means the existence of Weyl-Majorana spinors. Now the consistent constraint matrices of the

Weyl-Majorana spinors are

Vo ---pra (B.10)
The constraint equation (B3] is just the projection equation
P, 0=0,
or
P, ., 0=0.
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d | « Consistent constraint matrices
9 0 Y015 V1
1 Y0, o1
310 Yi/Yoi
0 Y0is Y0irizs Vi
g |1 Y05 Y0ir VOiy--iqs YOi1---is >
Yiv-igs Viv-iar V17
9 |1 Y0/ V185 Y0i [ Viy iz
Yiy-rrig [ V0iy g s Viz---ia/V0ir s
0 Y0is V0irizs V0i1--i5s V0i1--igy YO1---95
10 Vis Viv-iay Vireiss Vir-igy V19
1 Y0, Y0is Y0i1--ias V0i1--i5r V0iq--+igs V0O1---9,
Viq--izs Viv-iar Viv--izy Vir--ig
1lo Y0i [ Vir o> Vivia/Vir-iss
Vi V0iy g > Viroia/ V0iz-ig> Vir-ris/ V0i1-is
1210 Y0i> V0irigs V0iy---iss V0ir--igy V0ii---igs V0i1--i10>

Yis Viv-vias Vizeiss Vireeigy Vip-ig

Table 1: Consistent constraint matrices for Majorana spinors in Minkowski spacetime. Here the Latin
vary from 1 to d — 1. Matrices separated by “/” are just the equivalent ones, up to
a possible factor —1 or +i.

letters 7,471,129, - -

d | a Consistent constraint matrices
210 Yu
611 Vpa-pss Tpa-pa
Tl Vo wpas [ Vo --pa
3 0 Vs Vpa-pas Ypr-ops V18
1 Vpa-pzr Ypa-pas Ypr-pr> V18
910 Yoo/ Vpa s s Vpsaowopa/ Vo o
10 | O | Yus Y- pas Ypurpss Yur-us> Yut--puo

Table 2: Consistent constraint matrices for Majorana spinors in Euclidean space. Here the Greek

letters Hos o1, 42y -0

vary from 1 to d.
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As an application of the above discussions we revisit one problem in Subsection 3.4 of [7]. There

were analyses of the Killing spinors of d = 11 M-theory in the AdS4xS7/Z;, spacetime. One needs

(ya7 + Y58 + Y69 + V456789 )€0 = 0, (B.11)

and €y is a constant Majorana spinor. The authors used 747, 758, V69, and 456789 as constraint

matrices, but from above discussions this is illegal. We rewrite (BI1) as

(74578 + Y4679 + Y5680 + 1)eg = 0. (B.12)

Because [v4578, 74679] = 0, we can use the basis in which

V4578€0 = S1€0,  V4679€0 = S2€0, (B-13)

and so we get

V5689€0 = 5152€0- (B.14)

Here s 9 are 1, and so the Majorana spinor €; takes four configurations
(s1,82) = (++), (+=), (=), (=) (B.15)

Among them only the first one does not satisfy (B.12]). So 1/4 supercharges are broken in the orb-
ifolding. We can also proceed with this and analyze the supercharges preserved by fundamental
string (without or with smearing), D2-brane (without or with smearing), and D6-brane in the orbifold
spacetime. The process is similar to what is discussed above and the final conclusions in [7] do not

change.

C Conventions in d=3 Minkowski spacetime

We follow most of the conventions in [35], but there are also some minor differences. In three-
dimensional Minkowski spacetime, we use the coordinates z# = (2%, 2!, 22) and the metric N =

diag(— + +). We choose the gamma matrices as
1 B = (io?, 0!, 0%), (C.1)

with 01?3 being the Pauli matrices. Note that these are real matrices. They satisfy y#~y” = n* +

012 _

MYy VY = Nuw + €uup’, with e#? and €, being totally antisymmetric and e —€p12 = 1.

We have the Grassmann odd spinor 6, with the spinor index o« = 4+, —. We define the matrices

60‘5:<_1 1), 6a5:<1 _1>. (C.2)

Spinor indices are raised and lowered as

X =e""X5,  Xo=eapX’. (C.3)
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Then one can get

Y =-Y, (C.4)

Here X and Y are general objects with spin indices, but they cannot involve e*?, €a 5&, On, Or 0.

Thus we have
_ 3 1
755 =g = (-1,-0%,0'), (C.5)
which are real symmetric matrices. The conventions allow us to define the charge conjugate of spinors

as

O, =05, 07 =0,. (C.6)

o

It is easy to see 0 = 6. We also define the shorthand
00 = 0%y, 07" = 6%4H Pyg. (C.7)
We have the following useful relations

61/} - w07 (Hw)* = _1/;57 ’YMG - _0’7“7
O p = =y, (OyHh)* = Pye. (C.8)

D Conventions in d=3 Euclidean space

In three-dimensional Euclidean spacetime, we use the coordinates z# = (z!,22%,23) and the metric

O = diag(+ + +). We choose the gamma matrices as
fy/»‘aﬁ — (_0'27 0'1’ 0’3)’ (Dl)

with o123 being the Pauli matrices. Note that (v)7 = ¥, i.e. <’y“a5) = 9" We have 77" =

123

O +4e! Py, Yy = O +i€upy?, with 7P and €, being totally antisymmetric and €*° = €123 = 1.

We have the spinor 0, that is Grassmann odd. The spinor indices «, (3, - - - can be raised or lowered
using €*? or €qp in the same way as the Minkowski case. One can check that 'ygﬁ is symmetric but
not real. Note that there is no Majorana spinor in d = 3 Euclidean space. From 6 there can be spinor
01 satisfying

o, =01, 0 = -0},
0T = 0,, OIF =—0°. (D.2)
Formally we have 61 = —@. However, 87 will not be used in this paper. We also have symbol 6,

but it is independent and has nothing to do with 6, 8* or §7. There are shorthand the same as the

Minkowski case
0 = 0%, 0719 = %41 Papgs. (D.3)
We have the following relations
O =0, (0)" = w0t A0 =—0 ",
Oy = =0, (0y1)" = —yplyrel. (D.4)
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