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Abstract

We investigate cosmological dynamics of multiple tachyon fields with inverse square po-

tentials. A phase-space analysis of the spatially flat FRW models shows that there exists

power-law cosmological scaling solutions. We study the stability of the solutions and find

that the potential-kinetic-scaling solution is a global attractor. However, in the presence

of a barotropic fluid the solution is an attractor only in one region of the parameter space

and the tracking solution is an attractor in the other region. We briefly discuss the physical

consequences of these results.
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1 Introduction

Cosmological inflation has become an integral part of the standard model of the universe.

Apart from being capable of removing the shortcomings of the standard cosmology, the

paradigm seems to have gained a fairly good amount of support from the recent observa-

tions on microwave background radiation. On the other hand, there have been difficulties

in obtaining accelerated expansion from fundamental theories such as string/M-theory. Re-

cently, Sen [1] has constructed a classical time-dependent solution which describes the decay

process of an unstable D-brane in the open string theory. During the decay process the

tachyon field on the brane rolls down toward the minimum of the potential. The tachyon

field might be responsible for cosmological inflation at the early epochs due to tachyon con-

densation near the top of the effective potential [2], and could contribute to some new form

of cosmological dark matter at late times. Several authors have investigated the process of

rolling of the tachyon in the cosmological background [3] and in the braneworld scenario [4].

The stability of tachyon inflation against changes in initial conditions has been studied

for exponential potentials [5] and for inverse power-law potentials [6]. Exact solutions for a

purely tachyon field with an inverse square potential are known [7], but no solutions exist for

multiple tachyon fields, so a dynamical analysis may be relevant. It is interesting that the

inverse square potentials play the same role for tachyon fields as the exponential potentials

do for standard scalar fields [8]. The potentials allow constructing an autonomous system

which gives power-law solutions. Recently, it was pointed out that the tachyon model of

inflation is hard to be consistent with observations [9], unless there is a large number of

coincident branes [10]. In this letter, we will consider cosmological dynamics of multiple

tachyon fields with inverse square potentials. We have assumed that there is no direct

coupling between the inverse square potentials. The only interaction is gravitational. A

phase-space analysis of the spatially flat FRW models shows that there exist a cosmological

scaling solution which is a unique attractor. We find that accelerated expansion of the

universe can be driven by multiple tachyon fields at lower-Planck energy densities. In this

model we then introduce a barotropic perfect fluid to the system. We discuss the physical

consequences of these results.

2 Multiple Inverse Square Potentials

We start with more general model with m tachyon fields φi, in which each has an inverse

square potential

Vi(φi) = V0iφ
−2
i . (1)

Note that there is no direct coupling of the tachyon fields, which influence each other only

via their effect on the expansion. The evolution equation of each tachyon field for a spatially
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flat FRW model with Hubble parameter H is

φ̈i

1 − φ̇i
2 + 3Hφ̇i +

1

Vi(φi)

dVi(φi)

dφi

= 0, (2)

subject to the Friedmann constraint

H2 =
κ2

3

m
∑

i=1

Vi(φi)
√

1 − φ̇i
2
, (3)

where κ2 ≡ 8πGN is the gravitational coupling. Defining 2m dimensionless variables

xi ≡ φ̇i, (4)

yi ≡ κ2Vi(φi)

3H2
, (5)

the evolution equations (2) can be written as an autonomous system:

x′
i = −3

(

xi −
√

βiyi

)

(

1 − x2
i

)

, (6)

y′
i = 3yi





m
∑

i=1

yi x
2
i

√

1 − x2
i

−
√

βiyi xi



 , (7)

where a prime denotes a derivative with respect to the logarithm of the scalar factor,

N ≡ ln a, and βi ≡ 4/(3κ2V0i). The constraint equation (3) becomes

1 =
m
∑

i=1

yi
√

1 − x2
i

. (8)

Critical points correspond to fixed points where x′
i = 0 and y′

i = 0, and there are self-similar

solutions with
Ḣ

H2
= −3

2

m
∑

i=1

yi x
2
i

√

1 − x2
i

. (9)

This corresponds to an expanding universe with a scale factor a(t) given by a ∝ tp or a

contracting universe with a scalar factor given by a ∝ (−t)p, where

p =
1

3
2

∑m
i=1

yi x2

i√
1−x2

i

. (10)

Setting x′
i = 0 and y′

i = 0, we can get the fixed points K corresponding to kinetic-

dominated solutions and the fixed points S listed in Table 1 with

x2
s =

1

2
β
(

√

β2 + 4 − β
)

, (11)
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Label xi yi p Existence Stability
K ±1 0 2

3
all βi unstable

S xs
x2

s

βi

4

3β(
√

β2+4−β)
all βi stable

Table 1: The properties of the critical points in a spatially flat FRW universe containing
two tachyon fields with inverse square potentials.

where we using the following definition:

1

β
≡

m
∑

i=1

1

βi
. (12)

The fixed points K behave like non-relativistic matter with p = 2/3. The fixed point S is

the kinetic-potential-scaling solution with

p =
4

3β(
√

β2 + 4 − β)
. (13)

We find that accelerated expansion of the universe occurs if β < 2/
√

3. For a single

tachyon field with an inverse square potential, V0 must be larger than 2/(
√

3κ2) to guarantee

accelerated expansion. However, accelerated expansion of the universe can be driven by

sufficiently multiple tachyon fields with V0 at lower-Planck energy densities.

In order to analysis the stability of the critical points, we only consider the cosmologies

containing two tachyon fields. Using the Friedmann constraint equation (8), we reduce

Eqs.(6) and (7) to three independent equations

x′
1 = −3

(

x1 −
√

β1y1

)

(

1 − x2
1

)

, (14)

y′
1 = 3y1





(x2
1 − x2

2)y1
√

1 − x2
1

+ x2
2 −

√

β1y1 x1



 , (15)

x′
2 = −3





x2 −
√

β2

(

1 − x2
2

)
1

4



1 − y1
√

1 − x2
1





1

2







(

1 − x2
2

)

. (16)

The linearization of system (14)-(16) about the fixed points K yields three positive char-

acteristic exponents

λ1 = λ2 = 6, λ3 = 3,

which indicate that the kinetic-dominated solutions are always unstable. Substituting linear

perturbations about the critical point S into Eqs.(14)-(16), to first-order in the perturba-

tions, yields the three negative eigenvalues

λ1 = −3x2
s

2β2
(2x2

s + β2),
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λ2 = −3x2
s

4β2

[

(2x2
s + β2) +

√

(2x2
s + β2)2 − 16β2x2

s(1 + β2/β1)(1 − β/β1)
]

,

λ3 = −3x2
s

4β2

[

(2x2
s + β2) −

√

(2x2
s + β2)2 − 16β2x2

s(1 + β2/β1)(1 − β/β1)
]

.

The critical point is consequently stable so that the corresponding cosmological scaling

solution is always a global attractor for any β. For a single tachyon field model β = β1, the

three eigenvalues reduce to one eigenvalue.

3 Plus a Barotropic Perfect Fluid

We now consider multiple tachyon fields with inverse square potentials evolving in a spatially

flat FRW universe containing a fluid with barotropic perfect equation of state Pγ = (γ−1)ργ ,

where γ is a constant, 0 < γ ≤ 2, such as radiation (γ = 4/3) or dust (γ = 1). The evolution

equation for the barotropic perfect fluid is

ρ̇γ = −3H(ργ + Pγ), (17)

subject to the Fridemann constraint

H2 =
κ2

3





m
∑

i=1

Vi(φi)
√

1 − φ̇i
2

+ ργ



 . (18)

We define another dimensionless variable z ≡ κ2ργ

3H2 . The evolution equations (2) and (17)

can then be written as an autonomous system:

x′
i = −3

(

xi −
√

βiyi

)

(

1 − x2
i

)

, (19)

y′
i = 3yi





m
∑

i=1

yi x
2
i

√

1 − x2
i

−
√

βiyi xi + γz



 , (20)

z′ = 3z





m
∑

i=1

yi x
2
i

√

1 − x2
i

+ γz − γ



 , (21)

and the Fridemann constraint equation becomes

1 =
m
∑

i=1

yi
√

1 − x2
i

+ z. (22)

Critical points correspond to fixed points where x′
i = 0, y′ = 0 and z′ = 0, and there are

self-similar solutions with

Ḣ

H2
= −3

2





m
∑

i=1

yi x
2
i

√

1 − x2
i

+ γz



 . (23)
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Label xi yi z p Existence Stability
K ±1 0 0 2

3
all βi, γ unstable

S xs
x2

s

βi
0 4

3β(
√

β2+4−β)
all βi, γ stable (γ ≥ β

√
β2+4−β2

2
);

unstable (γ <
β
√

β2+4−β2

2
)

F 0 0 1 2
3γ

all βi, γ stable (γ = 0);

unstable (γ 6= 0)

T
√

γ γ
βi

β
√

1−γ−γ
β
√

1−γ
2
3γ

γ <
β
√

β2+4−β2

2
stable

Table 2: The properties of the critical points in a spatially flat FRW universe containing
two tachyon fields with inverse square potentials plus a barotropic perfect fluid.

This corresponds to an expanding universe with a scale factor a(t) given by a ∝ tp, where

p =
2

3
∑m

i=1
yi x2

i√
1−x2

i

+ 3γz
. (24)

The system (19)-(21) has a fixed point K corresponding to kinetic-dominated solution,

a fixed point S which is a kinetic-potential-scaling solution, a fixed point F which is a

fluid-dominated solution, and a fixed point T which is a tracking solution listed in Table

2. In order to analysis the stability of the critical points, we still consider the cosmologies

containing two tachyon fields plus a barotropic perfect fluid.

K: xi = ±1, y = 0, z = 0. These kinetic-dominated solutions always exist for all βi

and γ, which behave like non-relativistic matter with a ∝ t2/3 irrespective of the nature of

the potentials. The linearization of system (19)-(21) about these fixed points yields four

eigenvalues

λ1 = λ2 = 6, λ3 = λ4 = 3γ,

which indicate that the solutions are always unstable.

S: xi = xs, y = x2
s/βi, z = 0. The potential-kinetic-scaling solution exists for all βi

and γ. The power-law exponent (13) depends on the parameter β of the potentials. The

linearization of system (19)-(21) about the fixed point yields four eigenvalues

λ1 = −3

(

x4
s

β2
+

x2
s

2

)

,

λ2 = −3(γ − x2
s),

λ3 = −3

2

(

x4
s

β2
+

x2
s

2

)

+
3

2

√

√

√

√

(

x4
s

β2
+

x2
s

2

)2

− 4x6
s

β2
,

λ4 = −3

2

(

x4
s

β2
+

x2
s

2

)

− 3

2

√

√

√

√

(

x4
s

β2
+

x2
s

2

)2

− 4x6
s

β2
,
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which indicate that the solutions are unstable for γ < β(
√

β2 + 4 − β)/2 and stable for

γ ≥ β(
√

β2 + 4 − β)/2 from Eq.(11).

F : xi = 0, yi = 0, z = 1. The fluid-dominated solution exists for all βi and γ,

corresponding to a power-law solution with p = 2/3γ. The linearization of system (19)-(21)

about the fixed point yields four eigenvalues

λ1 = λ2 = −3, λ3 = λ4 = 3γ,

which indicate that the solution is unstable for γ 6= 0 and stable only for γ = 0.

T : xi =
√

γ, yi = γ/βi, z = 1− γ
β
√

1−γ
. The tracking solution exists for γ < β(

√
β2 + 4−

β)/2. The solution displays a tracking behavior according to the definition in [11]. The

power-law exponent, p = 2/3γ, is identical to that of the fluid-dominated solution, depends

only on the barotropic index γ and is independent of the parameters βi of the potentials.

The linearization of system (19)-(21) about the fixed point yields four eigenvalues

λ1 = −3

4
(2 − γ) +

3

4

√

4 − 20γ + 17γ2,

λ2 = −3

4
(2 − γ) − 3

4

√

4 − 20γ + 17γ2,

λ3 = −3

4
(2 − γ) +

3

4

√

(2 − γ)2 + 16γ
√

1 − γ
(

γ/β −
√

1 − γ
)

,

λ4 = −3

4
(2 − γ) − 3

4

√

(2 − γ)2 + 16γ
√

1 − γ
(

γ/β −
√

1 − γ
)

,

which indicate that the solution is always stable when this point exists for γ < β(
√

β2 + 4−
β)/2.

The different regions in the (β, γ) parameter space lead to different qualitative evolution

in Figure 1. For γ > β(
√

β2 + 4 − β)/2, K, S and F exist. Point S is the stable late-

time attractor. Hence generic solutions begin at the two kinetic-dominated solutions or

at the fluid-dominated solution and approach the kinetic-potential-scaling solution at late

times. For γ < β(
√

β2 + 4 − β)/2, all critical points exist. Point T is the stable late-

time attractor. Hence generic solutions start at the two kinetic-dominated solution, at the

kinetic-potential-scaling solution or at the fluid-dominated solution and approach the stable

fluid-kinetic-potential-scaling solution.

4 Conclusions and Discussions

We have presented a phase-space analysis of the evolution for a spatially flat FRW uni-

verse containing m tachyon fields with inverse square potentials. We find that there exist
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Figure 1: Stability regions of the (β, γ) parameter space. In the regions I and II, the
tachyon kinetic-potential scaling solution is the stable late-time attractor. In the regions
III and IV, the fluid-dominated solution is the stable late-time attractor. The universe
accelerates in the regions I and III, while the universe decelerates in the regions II and IV.

cosmological scaling solutions that corresponds to an expanding universe with a ∝ tp. For

a single tachyon field with an inverse square potential, the universe could accelerate only

at nearly Planckian energy densities. However, accelerated expansion of the universe can

be driven by sufficiently multiple tachyon fields even at lower-Planck energy densities. The

reason for this behavior is that while each field experiences the ‘downhill’ force from its

own potential, it feels the friction from all the tachyon fields via their contribution to the

expansion [12]. In order to analysis the stability of the critical points, we only consider the

cosmologies containing two tachyon fields. We find that the critical point is always stable

so that the scaling solution is a global attractor irrespective of the form of the potentials.

This implies that the velocity of each tachyon field tends to be equal and constant via their

effect on the expansion.

Then we have extended the phase-space analysis of the evolution to a realistic universe

model with a barotropic perfect fluid plus m tachyon fields with inverse square potentials.

We have shown that the energy density of the tachyon dominates at late times for γ >

β(
√

β2 + 4 − β)/2, In constraint, for γ < β(
√

β2 + 4 − β)/2, the barotropic fluid does not

dominate completely and the contribution of tachyon energy density to the total one is not

negligible.

We emphasize that we have assumed that there is no direct coupling between these
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inverse square potentials. In a system with m non-coincident but parallel non-BPS D3-

branes [13], there are two kinds of open strings. One of them starts from and ends on

the same brane; The other starts from a given brane, then ends on a different brane. If

the distance between two branes are much larger than the string scale, one can ignore the

second kind of open strings, leaving a tachyon on the world volume for every brane. Thus,

we have m tachyons without interaction and the action is simply the sum of m single-

tachyon actions. It is worth studying further the the cosmological dynamics of multiple

tachyon fields with interactions.
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