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A bstract

W e present a phase—space analysis of coan ology containing m ultiple scalar elds with a
positive or negative cross-coupling exponential potential. W e show that there exist power-
law kineticpotentialscaling solutions fora su ciently at positive potential or for a stesp
negative potential. The form er is the unique late-tin e attractor, but it isdi cult to yield
assisted In ation. T he Jater isnever stabl In an expanding universe. M oreover, fora stesp
negative potential there exists a kineticdom nated regin e In which each solution is a late-
tin e attractor. In the presence of ordinary m atter these scaling solutions w ith a negative
cross-coupling potential are found unstable. W e brie y discuss the physical consequences
of these results.
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1 Introduction

Scalar eld coan ological m odels are of great Im portance in m odem cosm ology. T he dark
energy is attrbuted to the dynam ics of a scalar eld, which convincingly realizes the goal
of explaining current accelerating expansion of universe generically using only attractor so—
Jutions [ll]. Furthem ore a scalar eld can drive an accelerated expansion and thus provides
possible m odels for coan ological in ation in the early universe [2]. Tn particular, there have
been a num ber of studies of spatially hom ogeneous scalar eld cosm ologicalm odelsw ith an
exponential potential. T hey are already known to have interesting properties; for exam ple,
ifone has a universe containing a perfect uid and such a scalar eld, then fora w ide range
of param eters the scalar eld m In ics the perfect uid, adopting its equation of state [3].
These scaling solutions are attractors at late tines [4]. The In ation m odels and other
cogan ological consequences of m ultiple scalar elds have also been considered [5,16].

T he scale-nvariant form m akes the exponential potential particularly sinple to study
analytically. There are wellknown exact solutions corresponding to power-law solutions
for the coan ological scale factor a / & 1n a spatially at Friedm ann-R obertson-W alker
EFRW ) model [1]. M ore generally the coupled E instein-K kein-G ordon equations for a single

eld can be reduced to a onedim ensional system which m akes it particularly suitable for
a qualitative analysis [8,19]. Recently, adopting a system of din ensionless dynam ical vari-
ables [10], the coan ological scaling solutions w ith positive or negative exponentials have
been studied [11]. In general there arem any scalar eldsw ith exponential potentials in su-—
pergravity, superstring and the generalized E instein theories, thus m ultiple potentials m ay
be m ore interesting. Tn the previous paper [12], W e studied the stability of coan ological
scaling solutions in an expanding universe m odelw ith m ultiple scalar eldsw ith positive or
negative exponential potentials. A phase—space analysis of the spatially at FRW m odels
show s that there exist cosn ological scaling solutions w hich are the unique late-tim e attrac-
tors and successful in ationary solutions driven by m ultiple scalar eldsw ith a w ide range
of each potential slope param eter . It is assum ed that there is no direct coupling between
potentials. M ultiple crosscoupling exponential potentials arise In m any occasions, for in—
stance, from com pacti cations of vacuum E instein gravity on product spaces [13]. Tndeed
they are a natural outcom e of the com pacti cation of higher dim ensional theories down to
3+ 1 dimensions. W ith this In m Ind it is worth investigating such potential in a bit m ore
detail.

In this paper, we rst study a system of dim ensionless dynam ical variables of muliple
scalar eldsw ith a positive or negative cross-coupling exponential potential. W e ocbtain the
scaling solutions and analyze their stability. T here still exist coam ological scaling solutions
which are the unigue latetin e attractors. In this m odel we then introduce a barotropic

uid to the system . W e discuss the physical consequences of these results.



2 Crosscoupling E xponential P otential

W e considern scalar elds ; wih a crosscoupling potential
|
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where 2 8 Gy isthe gravitational coupling and ; are din ensionless constants charac—
terising the slope of the potential. Further we assume all ; 0 since we can m ake them
positive through ; ! ; if som e of them are negative. T he evolution equation of each
scalar eld fora spatially at FRW modelw ith Hubbl param eter H is
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sub fct to the Friedm ann constraint
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De ning (n + 1) din ensionless variables
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the evolution equations [J) can be w ritten as an autonom ous system :
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where a prin e denotes a derivative w ith respect to the logarithm of the scalar factor,
N Ina, and the constraint equation [J) becom es
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T hroughout this paper we w ill use upper/lower signs to denote the two distinct cases of
Vo > 0. x{ measures the contrbution to the expansion due to the eld’s kinetic energy
density, whike vy? represents the contribution of the potential energy. W e will restrict
our discussion of the existence and stability of critical points to expanding universes w ith
H > 0,ie,y 0.Crticalpoints corregpond to xed pointswhere x? = 0 and y’= 0, and
there are selfsin ilar solutions w ith

H- R
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T his corresponds to an expanding universe w ith a scale factora(t) given by a / £, where
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The system [{) and [@) has at m ost one n-din ensional sphere S enbedded n 0 + 1)-
din ensional phase—space corresponding to kineticdom inated solutions, and a xed point
A, which is a kineticpotential-scaling solution listed In Table 1.
In order to study the stability of the critical points, using the Friedm ann constraint
equation [1) we st reduce Egs.{d) and [@) to n independent equations
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Substituting linear perturbations x; ! x;+ x about the critical points into Egs.[I0), to
rst-order In the perturbations, gives equations ofm otion
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which yield n elgenvalues m ;. Stability requires the real part of all eigenvalues being
negative.

P
S: L ,x?=1,y= 0. These kineticdom inated solutions always exist for any form

of the potential, which are equivalent to sti — uid dom inated evolution with a / t'=°
irrespective of the nature of the potential. Then Egs.[Tl) becom e
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which yield n eigenvalues: one ofthem , saym ;,doesnotvanish,m, = 6( 1 iXi 0);

the rem ains of them wvanish. Thus the solutions are m arginally stable for L, ( ixi) >
. 6. For the qP)ecjal case ; = , usihg the constraint equation [1) we nd 6=@n ) <
Loxgen o (L, xfen)P = 1=" 7. That is, if each scalar eld has an identicalslpe

potential, there exist stable points only or 2> 6=n.
q

A:x; = p—%,Py = 1 %f L. ). The potenﬁal—}gmetrﬂcamg solution exists for
su ciently at L, ? < 6 positive potentials or steep L, ¢ > 6 negative potentials.
The powerJaw exponent, p= B—2—, dependson parameter ;. From Egs.[II) we nd the
eigenvalues o 0 1

m;= é 'S . iA



Label X5 y E xistence Stability

J:)n 2 J:’n —
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Tabl 1: T he properties of the critical points in a spatially at FRW universe containing n
scalar eldsw ith the crosscoupling exponential potential.

T hus the scaling solution is always stable when this point exists for a positive potential,
P

which corresponds to the power-law in ation In an expanding universe when §_; f < 2.

H owever, this solution is unstable for a negative potential.

The di erent regions of ; param eter gpace lead to di erent qualitative evolution. A s
an exam ple we consider the coam ologies containing n scalar elds w ith the crosscoupling
potential ; = . Forthe su cilently at ( 2 < 6=n) positive potential, these kinetic-
dom nated solutions are unstable and the kineticpotentialscaling solution isthe stable late—
tin e attractor. Hence generic solutions start in the form er and approach the later at late
tin es. Forthe steep ( 2 > 6=n) positive potential, there exists a stable kineticdom inated
regin e, In which each points are the Jatetin e attractors. H ence generic solutions start in
kinetic-dom inated solution and approach the stable regin e. Forthe at su ciently ( 2 <
6=n) negative potential, only these kinetic-dom inated solutions exist which are unstable
scaling solutions. Forthe steep ( 2 > 6=n) negative potential, the kineticpotentialscaling
solution is unstable and there exists a stable kinetic-dom inated regine. Hence generic
solutions start in a kineticdom inated regim e or the kineticpotentialscaling solution and
approach the stable kinetic-dom Inated regin e at Jate tim es.

3 PlusaBarotropic Fluid

W e now consider multiple scalar elds with the crosscoupling potential {ll) evolving in
a spatially at FRW universe containing a uid with barotropic equation of state P =

( 1) ,where isa constant, 0 < 2, such as radiation ( = 4=3) ordust ( = 1).
T he evolution equation for the barotropic uid is

= 3H( +P); 12)
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o
W e de ne another din ensionless variable z  #=— . The evolution equations ) and @)
can then be w ritten as an autonom ous system :
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and the constraint equation becom es
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C ritical points correspond to  xed points where xf = 0,y’= 0and z°= 0, and there are

selfsim ilar solutions w ith
H- X > 3
P = 3 Xj_ 7 VA (18)

T his corregponds to an expanding universe w ith a scale factora (t) given by a / £, where
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The system [I4)-[[d) has at most one n-din ensional sphere S embedded n ( + 2)-
din ensional phase—space corresponding to kinetic-dom inated solutions, a xed point A
which is a kineticpotentialscaling solution, a xed point B which is a uid-dom inated
solution, and a xed point C which is a uid-potentialkineticscaling solution listed in
Tablk 2.

P
S: L,x(=1,y=0,z= 0. Thes kineticdom inated solutions always exist for any

fom of the potential, which are equivalent to sti — uid dom inated evolution with a / t*=>
irrespective of the nature of the potential. T he linearization ofsystem [[4)-[1d) about these
xed points yields
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which indicate that the solutions arem arghally stable for L, ( ix;) > 6andasti uid
= 2.
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A:x = »t,y = a 2), z = 0. The potentialkineticscaling solution
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T he linearization of system [[4)-[I8) about this critical point yields  + 1) elgenvalues

1% n
6 =1

0 1
1 X
=1
0 ’ 1
1 X0
m, = —-@3 S

=1

P
T hus the scaling solution is stable for a positive potential w ith %1 £< 3 ,whih corre-
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soonds to the powerdaw in ation in an expanding universe when L, 7 < 2.

B: x;=0,y= 0,z= 1. The uiddom nhated solution exists for any form of the
potential, corresponding to a power-daw solution with p= 2=3

>%_Q= 3Xi+(3 6i)Z;
2 = 3 z;

which indicate that the so]utjog is never stable.
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scaling solution exists for a positive potentialwith L, > 3 . ThepowerJaw exponent,
p= 2=3 ,isidenticaltothatofthe uid-dom inated solution, dependsonly on the barotropic
Index and is independent of the slope ; of the potential. The linearization of system

[[@)-[M8) about the xed point yields
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Label X5 zZ E xistence Stability
P
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Tabl 2: T he properties of the critical points in a spatially at FRW universe containing n
scalar eldsw ith the crosscoupling exponential potential plus a barotropic uid.
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T hus the scaling solution is stable for a positive potentialwith L, > 3

The di erent regions in the ( ; ;) param eter space lead to di erent qualitative evolu—
tion. Forthe su ciently at ( 1, ? < 3 ) positive potential, S, A and B exist. Point
A is the stabl latetin e attractor. Hence generic solutions begin in a kinetic-dom inated
regin e or at the uid-dom inated solution and approach the kineticpotentialscaling so—
lution at late tines. For the ntermediate @ < L, ? < 6) posiive potential, all
critical points exist. Point C is the stable latetin e attractor. Hence generic solutions
start In a kineticdom inated regine, at the kineticpotentialscaling solution or at the
uid-dom jnatedPsolutjon and approach the stable uid-kineticpotentialscaling solution.
For the steep ( 1, f > 6) positive potential, S, B and C exist. Point C is the sta-
ble latetin e attractor. Hence generic solitions start in a kineticdom inated regin e or at
the uid-dom inated solution angl approach the stabl uid-kineticpotentialscaling solu—
tion. For the su ciently at ( L., 7 < 3 ) negative potential, the kineticdom hated
solution S andPthe uid-dom inated solution B exist, which are unstable. For the Inter-
mediate 3 < L, ? < 6) negative potential, the kinetic-dom jnat%d solution S and the
uid-dom inated solution B exist, which are unstable. Forthe steep (L, 7> 6) negative
potential, S, A and B exist. Point A is the stable Jatetin e attractor. H ence generic solu—
tions start in a kinetic-dom Inated regim e or at the uid-dom inated solution and approach

the stabl kineticpotentialscaling solution at Jate tim es.



4 Conclusions and D iscussions

W e have presented a phase—space analysis of the evolution fora spatially at FRW universe
containing n scalar elds w ith a positive or negative crosscoupling exponential potential.
In particular, for the ; = case, we nd that in the expanding universe m odel w ith a
su clently at ( 2 < 6=n) positive cross-coupling potential the only powerJaw kinetic—
potentialscaling solution is the latetim e attractor. Tt ism ore di cult to obtain assisted
n ation In such m odels since the elds w ith crosscoupling exponential potential tend to
conspire to act against one another ratherthan assist each other. However, steep ( 2 > 6=n)
negative cross-coupling potential has kinetic-dom inated solutions wih a / £, some of
which are the latetin e attractors. It can be known that the kinetic energy of each eld
tends to be equal via their e ect on the expansion at late tim es.

T hen we have extended the phase—space analysis of the evolution to a realistic universe
m odelw ith a barotropic uid plusn scalar eldsw ith a positive or npegatjye cross-coup ling
exponential potential. W e have shown that forthe su ciently at ( L, ?< 3 ) positive
cross-coup ling potential, the kineticpotential-scaling solution is the stable late-tin e attrac-
tor. T he energy density ofthe scalar elds dom inates at Jate tin es. M oreover, for the steep
(P o f > 6) positive cross-coupling potential, the uid-kineticpotentialscaling solution

is the stable latetin e attractor. H ow ever, a negative cross-coupling potential has no stable
scaling solutions.
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