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We discuss spin and pseudo-spin symmetry in the spectrum of single nucleons and single anti-
nucleons in a nucleus. As an example we use relativistic mean field theory to investigate single
anti-nucleon spectra. We find a very well developed spin symmetry in single anti-neutron and single
anti-proton spectra. The dominant components of the wave functions of the spin doublet are almost
identical. This spin symmetry in anti-particle spectra and the pseudo-spin symmetry in particle
spectra have the same origin. However it turns out that the spin symmetry in anti-nucleon spectra
is much better developed than the pseudo-spin symmetry in normal nuclear single particle spectra.
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Symmetries in single particle spectra of atomic nu-
clei have been discussed extensively in the literature, as
the violation of spin-symmetry by the spin-orbit term
and approximate pseudo-spin symmetry in nuclear sin-
gle particle spectra: atomic nuclei are characterized by a
very large spin-orbit splitting, i.e. pairs of single particle
states with opposite spin (j = l ± 1

2 ) have very different
energies. This fact allowed the understanding of magic
numbers in nuclei and forms the basis of nuclear shell
structure. More than thirty years ago [1, 2] pseudo-spin
quantum numbers have been introduced by l̃ = l± 1 and
j̃ = j for j = l ± 1

2 and it has been observed that the
splitting between pseudo-spin doublets in nuclear single
particle spectra is by an order of magnitude smaller than
the normal spin-orbit splitting.

After the observation that relativistic mean field mod-
els yield spectra with nearly degenerate pseudo spin-orbit
partners [3], Ginocchio showed clearly that the origin of
pseudo-spin symmetry in nuclei is given by a relativistic
symmetry in the Dirac Hamiltonian ([4, 5] and references
given therein). He found that pseudo-spin symmetry be-
comes exact in the limiting case, where the strong scalar
and vector potentials have the same size but opposite
sign. However, this condition is never fulfilled exactly in
real nuclei, because in this limit the average nuclear po-
tential vanishes and nuclei are no longer bound. It has
been found that the quality of pseudo-spin symmetry is
related to the competition between the centrifugal barrier
and the pseudo-spin orbital potential [6].

In relativistic investigations a Dirac Hamiltonian is
used. In its spectrum one finds single particle levels with
positive energies as well as those with negative energies.
The latter are interpreted as anti-particles under charge
conjugation. This has lead to much efforts to explore con-
figurations with anti-particles and their interaction with
nuclei. The possibility of producing a new kind of nu-
clear system by putting one or more anti-baryons inside

ordinary nuclei has recently gained renewed interest [7].
For future studies of anti-particles in nuclei it is therefore
of great importance to investigate the symmetries of such
configurations.
In a relativistic description nuclei are characterized by

two strong potentials, an attactive scalar field −S(r) and
a repulsive vectror field V (r) in the Dirac equation which
for nucleons (labelled by a subscript “N”) reads,

[α · p+ VN(r) + β(M − SN(r))]ψN(r) = ϵNψN(r),
(1)

where VN(r) = V (r) and SN(r) = S(r). For a spherical
system, the Dirac spinor ψN has the form

ψN(r, s) =
1

r

(

iGnκ(r)Y l
jm(θ,φ, s)

−Fñκ(r)Y l̃
jm(θ,φ, s)

)

, j = l ±
1

2
, (2)

where Y l
jm(θ,φ) are the spin spherical harmonics.

Gnκ(r)/r and Fñκ(r)/r form the radial wave functions
for the upper and lower components with n and ñ radial
nodes. κ = ⟨1 + σ · l⟩ = (−1)j+l+1/2(j + 1/2) character-
izes the spin orbit operator and the quantum numbers l
and j. l̃ = l−sign(κ) is the orbital angular momentum of
the lower component. It is therefore well accepted, that
the pseudo-spin quantum number of a particle state with
positive energy are nothing but the quantum numbers of
the lower component [4, 5].
Charge conjugation leaves the scalar potential SN(r)

invariant while it changes the sign of the vector poten-
tial VN(r). That is, for anti-nucleons (labelled by “A”),
VA(r) = −VN(r) = −V (r) and SA(r) = SN(r) = S(r).
Charge conjugation of Eq. (2) gives the Dirac spinor for
an anti-nucleon,

ψA(r, s) =
1

r

(

−Fñκ̃(r)Y l̃
jm(θ,φ, s)

iGnκ̃(r)Y l
jm(θ,φ, s)

)

, j = l ±
1

2
, (3)

with κ̃ = −κ.
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We are only interested in positive energy states of the
Dirac equations. Therefore normal quantum numbers fol-
low the upper component which is dominant. A particle
state is labeled by {nlκm}, while its pseudo-quantum
numbers are {ñl̃κ̃m}. Following Ref. [8], ñ = n + 1 for
κ > 0; ñ = n for κ < 0. An anti-particle state is la-
beled by {ñl̃κ̃m} and its pseudo-quantum numbers are

{nlκm}. In analogy to Ref. [8], we deduce the relation

n = ñ+ 1, for κ̃ > 0; n = ñ, for κ̃ < 0. (4)

With κ(1− κ) = l̃(l̃+1) and κ(1+ κ) = l(l+1) in mind,
one derives Schrödinger-like equations for the upper and
the lower components

[

−
1

2M+

(

d2

dr2
+

1

2M+

dV+

dr

d

dr
−

l(l + 1)

r2

)

−
1

4M2
+

κ

r

dV+

dr
+M − V−

]

G(r) =

{

+ϵNG(r),
−ϵAG(r),

(5)

[

−
1

2M−

(

d2

dr2
−

1

2M−

dV−

dr

d

dr
+

l̃(l̃ + 1)

r2

)

+
1

4M2
−

κ̃

r

dV−

dr
+M − V+

]

F (r) =

{

−ϵNF (r),
+ϵAF (r),

(6)

TABLE I: Relation between symmetry and external fields.

Particle Anti particle
dV+/dr = 0 Spin symmetry Pseudo spin symmetry
dV

−
/dr = 0 Pseudo spin symmetry Spin symmetry

where V±(r) = V (r) ± S(r) and M± = M±(ϵ) = M ±
ϵ ∓ V± with ϵ = +ϵN or −ϵA. Both equations are fully
equivalent to the exact Dirac equation with the full spec-
trum of particle and anti-particle states. But they carry
different quantum numbers. For particle states the first
equation carries spin-quantum numbers and the second
carries pseudo-spin quantum numbers, for anti-particle
states the opposite is true. In the following discussions
we will use either the first or the second equations accord-
ing to the type of quantum numbers (spin or pseudo-spin)
we are interested in.

We give the relation between spin or pseudo-spin sym-
metry and the external fields in Table I. If dV+/dr = 0,
we have exact spin symmetry in the particle spectrum
and exact pseudo-spin symmetry in the anti-particle
spectrum because states with the same l (but different
κ) are degenerate in Eq. (5). l is the orbital angular mo-
mentum of particle states and pseudo orbital angular mo-
mentum of anti-particle states. When dV+/dr ̸= 0, the
symmetries are broken. But if dV+/dr is so small that
the spin-orbit term (the term ∼ κ) in Eq. (5) is much
smaller than the centrifugal term, there will be approx-
imate symmetries. For nuclei far from stability where
the nuclear potential is expected to be more diffuse, the
spin-orbit splitting in single nucleon spectra will be also
smaller as compared to stable nuclei. This quenching of
the spin-orbit splitting could be one of the reasons for
the change of magic numbers in exotic nuclei.

Similarly, when dV−/dr = 0 in Eq. (6), there is an
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FIG. 1: Anti-neutron potential and spectrum of 16O. For each
pair of the spin doublets, the left level is with κ̃ < 0 and
the right one with κ̃ > 0. The inset gives neutron potential
M + V

−
(r) and spectrum.

exact pseudo-spin symmetry in the particle spectra [5].
On the other hand, if we focus on anti-particle states,
we have in this case exact spin symmetry because now l̃
is the orbital angular momentum. If dV−/dr ̸= 0 but
small, we have approximate pseudo-spin symmetry in
particle spectra and approximate spin symmetry in anti-
particle spectra. This implies that the spin symmetry
in the anti-particle spectrum has the same origin as the
pseudo-spin symmetry in particle spectrum as realized in
Ref. [5]. However, there is an essential difference in the
degree to which the symmetry is broken in both cases:
the factor 1/M2

− = 1/(M − ϵ + V−)2 is much smaller
for anti nucleon states than that for nucleon states. The
bound anti-particle energies ϵA are in the region between
M − V+(0) ! ϵA ! M . For realistic nuclei roughly
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FIG. 2: Spin-orbit splitting ϵA(nll−1/2)− ϵA(nll+1/2) in anti-
neutron spectra of 16O and 208Pb versus the average energy
of a pair of spin doublets. The vertical dashed line shows the
continuum limit.

we therefore have 0.3 GeV ! ϵA ! 1 GeV. On the
other hand the bound particle states are in the region
of M − |V−(0)| ! ϵN ! M , i.e. for realistic nuclei close
to 1 GeV. We therefore have |M−(ϵA)| > 2|M − S(0)|
and |M−(ϵN)| < |V−(0)|. Thus the factor in front of the
κ̃-term is for anti-particle states by more than a factor
(2|M − S(0)|/|V−(0)|)2 ≈ 400 smaller than for particle
states. Spin-symmetry for anti-particle states is therefore
much less broken than pseudo-spin symmetry for particle
states.
Since the spin-orbit term in Eq. (6) is so small for

anti-nucleon states, we expect in addition that the radial
wave functions of the spin-doublets are nearly identical,
i.e. the dominant components of spin partners for anti-
particle solutions are much more similar than the small
components of pseudo-spin partners for particles.
Although the present discussion is meant for single

particle spectra in atomic nuclei, the idea is very gen-
eral. It has been first discovered that the equality of
the vector and scalar potentials results in spin symmetry
in Ref [9, 10] where the authors suggested applications
to meson spectra. However, this symmetry was only
recently found to be valid for mesons with one heavy
quark [11]. In the present letter, we illustrate for the
first time in realistic nuclei nearly exact spin symmetry
in the single particle spectra for anti-nucleons. We use
for that purpose non-linear relativistic mean field (RMF)
theory [12] with modern parameter set NL3. Relativistic
Hartree calculations are carried out in coordinate space
for the doubly magic nuclei 16O and 208Pb.
For 16O, pseudo-spin symmetry cannot be studied suc-
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FIG. 3: Difference of the integration of the spin-orbit po-
tential ∆SOP versus the average energy for spin doublets in
208Pb. The vertical dashed line shows the continuum limit.

TABLE II: Energies (in MeV) of some pseudo-spin doublets
in neutron spectrum of 208Pb.

(n+ 1)s1/2 nd3/2 ∆E (n+ 1)p3/2 nf5/2 ∆E
895.046 898.152 −3.106 904.603 908.520 −3.917
920.168 920.914 −0.746 929.995 930.709 −0.714
938.878 938.455 0.423 (n+ 1)f7/2 nh9/2 ∆E

(n+ 1)d5/2 ng7/2 ∆E 925.638 927.984 −2.346
914.962 918.517 −3.555 (n+ 1)g9/2 ni11/2 ∆E
938.484 938.292 0.192 936.078 936.572 −0.494

cessfully because there are only very few bound nucleon
states. However, as seen in Fig. 1, there are many more
anti-particle states. We find excellent spin symmetry for
them. Since there are too many levels in anti-particle
spectra of 208Pb (around 400 for either anti-neutrons or
anti-protons), we will not give a similar figure in this case.

In Fig. 2 we present the spin-orbit splitting in anti-
neutron spectra of 16O and 208Pb. For 16O, the spin-orbit
splittings are around 0.2-0.5 MeV for p states (l = 1).
With increasing particle number A the spin symmetry in
the anti-particle spectra becomes even more exact. For
208Pb, the spin-orbit splittings are ∼ 0.1 MeV for p states
and less than 0.2 MeV even for h states (l = 5) as seen
in the lower panel of Fig. 2. We show in Table II the
pseudo-spin orbit splitting of the neutron spectrum of
208Pb to compare them with the spin-orbit splitting in
anti-nucleon spectra. In most cases, the pseudo-spin or-
bit splittings for particles are larger than 0.4 MeV and
for deeply bound states, it can reach even values around
4 MeV.

In general, the spin-orbit splitting decreases with the
state approaching the continuum limit. But for very
deeply bound anti-neutron p, d, f and g states in 208Pb,
the spin orbit splitting is smaller. This might be due to
the competition between the centrifugal barrier and the
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FIG. 4: Radial wave functions of some spin doublets in the
anti-neutron spectrum of 16O.
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FIG. 5: Radial wave functions of some spin doublets in the
anti-neutron spectrum of 208Pb.

spin-orbit potential in Eq. (6). In order to investigate
this in more detail, we calculated the expectation value
of the spin-orbit potential,

SOP = −

∫

drF (r)2
1

4M2
−(ϵ)

κ̃

r

dV−

dr
. (7)

Since the lower amplitudes of the two spin doublets are
nearly equal to each other (cf. Figs. 4 and 5), we expect
the difference, ∆SOP , gives the main part of ∆ϵ of a
pair of spin doublets. In Fig. 3 we present ∆SOP as a
function of the average energy for spin doublets in 208Pb.
The variational trend of ∆SOP is roughly in agreement
with that of ∆ϵ. Particularly, for deeply bound states,
∆SOP ∼ ∆ϵ.
Wave functions of pseudo-spin doublets in single nu-

cleon spectra have been studied extensively in the litera-

ture [5]. The lower amplitudes of pseudo-spin doublet are
found to be close to each other. Since the spin symmetry
in the anti-nucleon spectrum is much more exact than the
pseudo-spin symmetry in the single nucleon spectrum, we
expect that the upper amplitudes of the spin doublets co-
incide with each other even much more.

In Figs. 4 and 5, we show radial wave functions F (r)
and G(r) for several anti-nucleon spin doublets in 16O
and 208Pb. The dominant components F (r) are nearly
exactly identical for the two spin partners. On the other
hand the small components G(r) of the two spin-partners
show dramatic deviations from each other. The relation
between the node numbers of the upper and lower am-
plitudes given in Eq. (4) is seen in Figs. 4 and 5.
In summary, we discussed the relation between the

(pseudo)-spin symmetry in single (anti)-particle states
and the external fields where the (anti)-particle moves.
We present the single anti-nucleon spectra in atomic nu-
clei as examples and find an almost exact spin symmetry.
The origin of the spin symmetry in anti-nucleon spectra
and the pseudo-spin symmetry in nucleon spectra have
the same origin but the former is much more conserved
in real nuclei. We performed RMF calculations for some
doubly magic nuclei. Even in a very light nucleus, 16O,
the spin symmetry in the anti nucleon spectrum is very
good. The spin splitting increases with the orbital quan-
tum number and decreases with the anti-nucleon state
approaching the continuum. An investigation of wave
functions shows that the dominant components of the
Dirac spinor of the anti-nucleon spin doublets are almost
identical.
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