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Abstract. Halo phenomenon in deformed nuclei is studied by using a fully self-consistent
deformed relativistic Hartree-Bogoliubov model in a spherical Woods-Saxon basis with the
proper asymptotic behavior at large distance from the nuclear center. Taking a deformed
neutron-rich and weakly bound nucleus 44Mg as an example and by examining contributions
of the halo, deformation effects, and large spatial extensions, we show a decoupling of the halo
orbitals from the deformation of the core.

1. Introduction
Since it was first observed in the weakly bound system 11Li [1], halo phenomenon has been one of
the most interesting topics in nuclear physics. Much effort has been focused on the investigation
of the structure and dynamics of nuclear halo [2]. Since most open shell nuclei are deformed, the
interplay between deformation and weak binding raises interesting questions, such as whether
or not there exist halos in deformed nuclei and, if yes, what are their new features.

Calculations in a deformed single-particle model with the spin-orbit coupling neglected have
shown that valence particles in specific orbitals with low projection of the angular momentum
on the symmetry axis can give rise to halo structures in the limit of weak binding and the
deformation of the halo may be different from that of the core [3]. Halos in deformed nuclei
were investigated in several mean field calculations [4, 5, 6]. However, there are some doubt
about the occurrence of halos in deformed nuclei. For example, it has been concluded that
in the neutron orbitals of an axially deformed Woods-Saxon potential the lowest-ℓ component
becomes dominant at large distances from the origin and therefore all Ωπ = 1/2+ levels do
not contribute to deformation for binding energies close to zero [7]. In addition, a three-body
model study [8] suggests that it is unlikely to find halos in deformed drip line nuclei because the
correlations between the nucleons and those due to static or dynamic deformations of the core
inhibit the formation of halos.

In order to give an adequate description of halos in deformed nuclei, a model should be
used which includes in a self-consistent way the continuum, deformation effects, large spatial
distributions, and couplings among all these features. Spherical nuclei with halos have been
described in the past successfully by the solution of either the non-relativistic Hartree-Fock-
Bogoliubov (HFB) [9, 10, 11] or the relativistic Hartree Bogoliubov (RHB) equations [12, 13, 14]
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in coordinate (r) space. However, for deformed nuclei the solution of HFB or RHB equations in
r space is a numerically very demanding task. In the past considerable effort has been made to
develop mean field models either in r space or in a basis with an improved asymptotic behavior
at large distances [6, 15, 16, 17, 18, 19, 20, 21]. In Ref. [18] the Woods-Saxon basis was proposed
as a reconciler between the harmonic oscillator basis and coordinate space. The Woods-Saxon
wave functions have more realistic asymptotic behavior at large r than the harmonic oscillator
wave functions do. One can use a box boundary condition to discretize the continuum. It has
been shown that the results in a Woods-Saxon basis is almost equivalent to those obtained in r
space [18, 22, 23]. A deformed relativistic Hartree model (DRH) [24] and a deformed relativistic
Hartree-Bogoliubov model (DRHB) [25] in a Woods-Saxon basis have also been developed.

In a recent work [26], the halo phenomenon in deformed nuclei is studied by using the DRHB
model in a Woods-Saxon basis. In this contribution, we shall present some of the results on
neutron halo in deformed nuclei. The formalism of the DRHB model in a Woods-Saxon basis
will be given in section 2. In section 3, the results and discussions will be presented. Finally a
summary is given.

2. The deformed relativistic Hartree-Bogoliubov model in a Woods-Saxon basis
The RHB equation for the nucleons reads [27]

∑

σ′p′

∫
d3r′

(
hD(rσp, rσ′p′)− λ ∆(rσp, r′σ′p′)
−∆∗(rσp, r′σ′p′) −hD(rσp, rσ′p′) + λ

)(
Uk(r′σ′p′)

Vk(r′σ′p′)

)
= Ek

(
Uk(rσp)

Vk(rσp)

)
,

(1)

where p = 1, 2 is used to represent the particle-antiparticle degree of freedom, Ek is the
quasiparticle energy, λ is the Fermi energy, and hD is the Dirac Hamiltonian [28, 29, 30, 31, 32],

hD = α · p+ V (r) + β(M + S(r)). (2)

The pairing potential reads

∆(r1σ1p1, r2σ2p2) =
σ′

2
p′
2∑

σ′

1
p′
1

Vp1p2p′1p
′

2
(r1, r2;σ1σ2σ

′
1σ

′
2)κ(r1σ

′
1p

′
1, r2σ

′
2p

′
2) . (3)

For axially deformed nuclei with spacial reflection symmetry, we expand the potentials and
the densities in terms of the Legendre polynomials [33],

f(r) =
∑

λ

fλ(r)Pλ(cos θ), λ = 0, 2, 4, · · · . (4)

The quasiparticle wave function is expanded in terms of wave functions of the Dirac Woods-
Saxon basis {ϵiκm,ϕiκm(rσp)} as,

Uk(rσp) =
∑

iκ

⎛

⎜⎝
u(m)
k,(iκ)ϕiκm(rσp)

u(m̄)

k,(ĩκ)
ϕ̃iκm(rσp)

⎞

⎟⎠ , Vk(rσp) =
∑

iκ

⎛

⎜⎝
v(m)
k,(iκ)ϕiκm(rσp)

v(m̄)

k,(ĩκ)
ϕ̃iκm(rσp)

⎞

⎟⎠ . (5)

The basis wave function reads

ϕiκm(rσ) =
1

r

(
iGiκ(r)Y l

jm(Ωσ)

−Fiκ(r)Y l̃
jm(Ωσ)

)

, j = l ±
1

2
, (6)

ch
in

aX
iv

:2
01

70
8.

00
25

7v
1



Figure 1. (Color online)
Density distributions of 44Mg
with the z-axis as symmetry
axis: (a) the proton density
(for x < 0) and the neutron
density (for x > 0), (b)
the density of the neutron
core, and (c) the density of
the neutron halo. In each
plot, a dotted circle is drawn
for guiding the eye. This
figure is originally published in
Ref. [26].

with Giκ(r)/r and Fiκ(r)/r the radial wave functions for the upper and lower components and
Y l
jm the spinor spherical harmonics where κ = (−1)j+l+1/2(j + 1/2) and l̃ = l + (−1)j+l−1/2.

ϕ̃iκm(rσp) is the time reversal state of ϕiκm(rσp). The states both in the Fermi sea and in
the Dirac sea should be included in the basis for the completeness [18, 34]. For each m-block,
solving the RHB equation (1) is equivalent to the diagonalization of the matrix,

(
A B
C D

)(
U

V

)
= E

(
U

V

)
, (7)

where

U =
(
u(m)
k,(iκ)

)
, V =

(
v(m)

k,(ĩκ)

)
, (8)

A =
(
A(m)

(iκ)(i′κ′)

)
, D =

(
−A(m)

(ĩκ)(ĩ′κ′)

)
, (9)

B =
(
∆(m)

(iκ)(ĩ′κ′)

)
, C =

(
−∆(m)

(ĩκ)(i′κ′)
= ∆(m)

(i′κ′)(ĩκ)

)
. (10)

For the pp channel, we use a zero range density dependent force,

Vp1p2p′1p
′

2
(r1, r2;σ1σ2σ

′
1σ

′
2) =

1

4
V0δ(r1 − r2)

(
1−

ρ(r1)

ρsat

)
[1− 4σ⃗11′ · σ⃗22′ ]

[
I
p
11′ · I

p
22′
]
. (11)

3. Results and discussions
The calculations are based on the density functional NL3 [35]. For the pp interaction (11),
the following parameters are used: ρsat = 0.152 fm−3 and V0 = 380 MeV·fm3, and a cut-off
energy Eq.p.

cut = 60 MeV is applied in the quasi-particle space. These parameters were fixed by
reproducing the proton pairing energy of the spherical nucleus 20Mg obtained from a spherical
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Figure 2. (Color online) Single
neutron levels with the quantum
numbers Ωπ around the chemical
potential (dotted line) in the canon-
ical basis for 44Mg as a function
of the occupation probability v2.
The order n, Ωπ, and the main
Woods-Saxon components for or-
bitals close to the threshold are also
given. The dashed line corresponds
to the BCS-formula with an aver-
age pairing gap. This figure is orig-
inally published in Ref. [26].

relativistic Hartree-Bogoliubov calculation with the Gogny force D1S. A spherical box of the
size Rmax = 20 fm and the mesh size ∆r = 0.1 fm are used for generating the spherical Dirac
Woods-Saxon basis [18] which consists of states with j < 21

2 h̄. An energy cutoff E+
cut = 100 MeV

is applied to truncate the positive energy states in the Woods-Saxon basis and the number of
negative energy states in the Dirac sea is taken to be the same as that of positive energy states
in each (ℓ, j)-block.

In the DRHB calculations for magnesium isotopes, the last nucleus within the neutron drip-
line is 46Mg which is almost spherical. The neighboring even-even nucleus 44Mg is well deformed
with quadrupole deformation β2 = 0.32. This nucleus is weakly bound with a small two-
neutron separation energy S2n = 0.44 MeV. Since we are interested in the neutron halo in
deformed unstable nuclei, 44Mg is taken as an example for a detailed investigation. The density
distributions of all protons and all neutrons in this nucleus are shown in Figure 1(a). Due to
the large neutron excess, the neutron density not only extends much farther in space but also
shows a halo structure. The neutron density is decomposed into the contribution of the core
in Figure 1(b) and that of the halo in Figure 1(c). Details of this decomposition are given
later. It is seen that the core of 44Mg is prolately deformed, but the halo has a slightly oblate
deformation, which indicates the decoupling between the deformations of core and halo.

To study the formation mechanism of a nuclear halo, one needs to investigate the weakly
bound orbitals and/or those embedded in the continuum. For an intuitive understanding of the
single particle structure we keep in mind that HB-wave functions can be represented by BCS-
wave functions in the canonical basis and show in Figure 2 the corresponding single particle
spectrum for the neutrons. As discussed in Ref. [36] the single particle energies in the canonical
basis εk = ⟨k|hD|k⟩ shown in Figure 2 are expectation values of the Dirac Hamiltonian (2) for
the eigenstates |k⟩ of the single particle density matrix ρ̂ with the eigenvalues v2k. The discrete
part of the spectrum of ρ̂ with v2k > 0 contributes to the HB-wave function and only this
part is plotted in Figure 2. This part of the spectrum εk is discrete even for the levels in the
continuum. Of course, this is only possible because the wave functions |k⟩ are not eigenfunctions
of the Hamiltonian. As long as the Fermi energy λn is negative, the corresponding density ρ(r)
is localized and the particles occupying the levels in the continuum are bound [10].

The orbitals in Figure 2 are labeled by the conserved quantum numbers Ω and π. The
character n numbers the different orbitals appearing from the bottom to the top in this figure
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according to their energies. The neutron Fermi energy lies within the pf shell and most of the
single particle levels have negative parities. Since the chemical potential λn = −230 keV is
relatively small, the orbitals above the threshold have noticeable occupation probabilities due
to pairing correlations. For example, the occupation probabilities of the 5th (Ωπ = 7/2−) and
the 6th (Ωπ = 1/2−) orbitals are 27.2% and 14.3%, respectively.

As we see in Figure 2 there is a considerable gap between the two levels with the numbers
n = 2 and n = 3. The levels with εcan < −2.5 MeV contribute to the “core”, and the other
remaining weakly bound and continuum orbitals with εcan > −1 MeV naturally form the “halo”.
Therefore we decompose the neutron density into two parts, one part coming from the orbitals
with canonical single particle energies εcan < −2.5 MeV (called “core”) and the other from the
remaining weakly bound and continuum orbitals (called “halo”). A further decomposition of
the neutron density shows that the two weakly bound orbitals, i.e., the 3rd (Ωπ = 1/2−) and the
4th (Ωπ = 3/2−), contribute mostly to the halo. If we decompose the deformed wave functions
of the two weakly bound orbitals, i.e. the 3rd (Ωπ = 1/2−) and the 4th (Ωπ = 3/2−), in the
spherical Woods-Saxon basis it turns out that in both cases the major part comes from p waves
as indicated on the right hand side of Figure 2. The low centrifugal barrier for the p wave gives
rise to the formation of the halo. Having a small p wave component, the 6th orbital (Ωπ = 1/2−)
contributes less to the halo though it is in the continuum and the occupation probability is rather
large. The contribution of the 8th orbital (Ωπ = 1/2+) to the tail of the density is even smaller
because its main components are of d waves. The large centrifugal barrier of f states hinders
strongly the spatial extension of the wave functions of the other two continuum orbitals, i.e.,
the 5th (Ωπ = 7/2−) and the 7th (Ωπ = 3/2−).

The slightly oblate shape of the halo originates from the intrinsic structure of the weakly
bound and continuum orbitals. As is mentioned above and shown in Figure 2, the main
Woods-Saxon components of the two weakly bound orbitals, the 3rd (Ωπ = 1/2−) and the
4th (Ωπ = 3/2−), are p states. We know that the angular distribution of |Y10(θ,φ)|2 ∝ cos2 θ
with a projection of the orbital angular momentum on the symmetry axis Λ = 0 is prolate and
that of |Y1±1(θ,φ)|2 ∝ sin2 θ with Λ = 1 is oblate. It turns out that in the 3rd (Ωπ = 1/2−)
orbital, both Λ = 0 and Λ = 1 components contribute and the latter dominates. Therefore this
orbital has a slightly oblate shape. For the 4th (Ωπ = 3/2−) state, there is only the Λ = 1
component from the p3/2 wave, an oblate shape is also expected.

4. Summary
Neutron halo in deformed nuclei is investigated within a deformed relativistic Hartree Bogoliubov
model in a Woods-Saxon basis. In a very neutron-rich deformed nucleus 44Mg a pronounced
deformed neutron halo is found. It is formed by several orbitals close to the threshold. These
orbitals have large components of low ℓ-values and feel therefore only a small centrifugal barrier.
Although 44Mg and its core are prolately deformed, the deformation of the halo is slightly oblate.
This implies a decoupling between the shapes of the core and the halo. The mechanism is
investigated by studying the details of the neutron densities for core and halo, the single particle
levels in the canonical basis, and the decomposition of the halo orbitals. We also studied the
weakly-bound nuclei in Ne isotopes and discussed the conditions for the occurence of a halo
and the shape decoupling [26]. It is shown that the existence and the deformation of a possible
neutron halo depends essentially on the quantum numbers of the main components of the single
particle orbits in the vicinity of the Fermi surface.
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