Gravitational Waves from Oscillons with Cuspy Potentials

Jing Liu1,2 Zong-Kuan Guo1,2 Rong-Gen Cai1,2 and Gary Shiu2

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
3Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA

We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

\textbf{Introduction.} Gravitational waves play an important role in the context of inflationary cosmology. A stochastic background of gravitational waves, produced during inflation and subsequent preheating/reheating after inflation, carries useful information about the inflationary dynamics and inflaton decay (see \cite{1} for a recent review). Detecting such a stochastic background of gravitational waves, whether directly or indirectly, can provide us with a unique opportunity to test theories of inflation.

During inflation, quantum fluctuations of the tensor modes of the spacetime metric were stretched by the accelerated expansion of the Universe, and were then nearly frozen on super-Hubble scales. In the standard single-field slow-roll inflationary scenario, the amplitude of the power spectrum of the resulting gravitational waves depends on the energy scale of inflation. Since these gravitational waves can result in B-mode polarization of the cosmic microwave background (CMB) anisotropies, their spectrum is in principle measurable by CMB polarization experiments. Although primordial B-modes have not been detected yet, the amplitude of the tensor spectrum (quantified by the tensor-to-scalar ratio r) has become a strong discriminator of models. Current CMB data alone already put an upper bound on $r < 0.09$ at 95\% confidence level \cite{2}, and when combined with the constraints on the scalar spectral index, have been effective in discriminating inflationary models. For example, the cubic and quartic potentials are strongly disfavored, and the quadratic potential is moderately disfavored by the Planck 2015 data \cite{3}, while axion monodromy inflation with a linear potential \cite{4} or fractional powers \cite{5} are compatible with the current Planck results. Further advances in axion monodromy inflation have suggested potentials with even more possible powers \cite{6,7}. Moreover, it has recently been shown that stringy effects can lower the power of a quadratic axion monodromy potential to less than linear \cite{8}. Thus, axion monodromy inflation represents an interesting class of large field inflationary models that are compatible with data.

Besides vacuum fluctuations during inflation, another source of gravitational waves is parametric resonance during preheating \cite{9}. During preheating after inflation, the Fourier modes of a scalar matter field χ coupled to the inflaton grow exponentially by parametric resonance, driven by the oscillating inflaton. The resonant modes are quickly pumped up to a large amplitude. Such highly pumped modes correspond to large, time dependent density inhomogeneities in position space, ensuring that the matter distribution has a non-trivial quadrupole moment, which can source a significant spectrum of gravitational waves \cite{10}. The present peak frequency of such gravitational waves is proportional to the energy scale of inflation \cite{11}, while the present amplitude of gravitational waves is independent of the energy scale of inflation \cite{12}. In hybrid inflation with the energy scale ranging from the GUT scales down to the TeV scale, the stochastic background produced during preheating is expected to be directly detected by future gravitational wave detectors \cite{13}.

In this letter, we shall investigate the production of gravitational waves during oscillations of the inflaton after inflation with a cuspy potential

$$V(\phi) = \lambda M_{\text{pl}}^{-p}|\phi|^p$$

with $p = 1, 2/3, 2/5$, and $M_{\text{pl}} \equiv (8\pi G)^{-1/2}$ is the reduced Planck mass. Our study is motivated by the potentials that appear in axion monodromy inflation \cite{14,15}, though we hasten to add that the powers of these potentials are expected only at large field values, due to the coupling of the inflaton to high scale physics. At the end of inflation, i.e., for small ϕ, these potentials for axion monodromy become quadratic. Nonetheless, cuspy potentials can arise in other inflationary contexts, e.g., through non-standard kinetic terms or as a result of integrating out the dynamics of other fields that couple to the inflaton. Thus, we use these specific potentials as benchmarks to illustrate the novel gravitational wave signatures that can arise when the potential has a cuspy behavior at the end of inflation. Assuming the potential in eq. (1) applies to both the inflationary era and at the end of inflation, the value of λ in this simple class of models can be fixed by the estimated amplitude of scalar perturbations from the CMB data. For powers of $p = 1, 2/3, 2/5$, $\lambda \approx 3, 4, 5 \times 10^{-10}$, the predicted scalar spectral index $n_s \approx 0.970, 0.973, 0.976,$ and
the predicted tensor-to-scalar ratio $r \approx 0.08, 0.05, 0.03$, respectively, assuming the number of e-folds $N = 50$. These predictions are in agreement with the recent CMB data. In the reheating scenario, the inflaton ϕ oscillates near the minimum of its potential after inflation and decays into elementary particles. However, due to the cusp of the potential, the oscillating behavior of the inflaton is very different from that of smooth potentials like ϕ^2 and ϕ^4. It has recently been shown that an efficient parametric resonance can occur during preheating for an inflaton potential of the form of eq. (1) with $0 < p \leq 2$, if the inflaton is coupled to a scalar matter field χ via an interaction term $\phi^2 \chi^2$ [14]. However, the production of gravitational waves has not been studied to our knowledge. In this letter, we are interested in gravitational wave production during oscillations of the inflaton after inflation with cuspy potentials. We find that the non-smooth oscillations can trigger amplification of fluctuations of the inflaton itself at the moment when $\phi(t) = 0$, so that oscillons copiously form after inflation. As in the models with symmetric smooth potential [15] and an asymmetric smooth potential [16], the oscillon formation in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted. Interestingly, in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted.

In the reheating scenario, the inflaton ϕ oscillates near the minimum of its potential after inflation and decays into elementary particles. However, due to the cusp of the potential, the oscillating behavior of the inflaton is very different from that of smooth potentials like ϕ^2 and ϕ^4. It has recently been shown that an efficient parametric resonance can occur during preheating for an inflaton potential of the form of eq. (1) with $0 < p \leq 2$, if the inflaton is coupled to a scalar matter field χ via an interaction term $\phi^2 \chi^2$ [14]. However, the production of gravitational waves has not been studied to our knowledge. In this letter, we are interested in gravitational wave production during oscillations of the inflaton after inflation with cuspy potentials. We find that the non-smooth oscillations can trigger amplification of fluctuations of the inflaton itself at the moment when $\phi(t) = 0$, so that oscillons copiously form after inflation. As in the models with symmetric smooth potential [15] and an asymmetric smooth potential [16], the oscillon formation in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted. Interestingly, in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted.

In the reheating scenario, the inflaton ϕ oscillates near the minimum of its potential after inflation and decays into elementary particles. However, due to the cusp of the potential, the oscillating behavior of the inflaton is very different from that of smooth potentials like ϕ^2 and ϕ^4. It has recently been shown that an efficient parametric resonance can occur during preheating for an inflaton potential of the form of eq. (1) with $0 < p \leq 2$, if the inflaton is coupled to a scalar matter field χ via an interaction term $\phi^2 \chi^2$ [14]. However, the production of gravitational waves has not been studied to our knowledge. In this letter, we are interested in gravitational wave production during oscillations of the inflaton after inflation with cuspy potentials. We find that the non-smooth oscillations can trigger amplification of fluctuations of the inflaton itself at the moment when $\phi(t) = 0$, so that oscillons copiously form after inflation. As in the models with symmetric smooth potential [15] and an asymmetric smooth potential [16], the oscillon formation in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted. Interestingly, in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted.

In the reheating scenario, the inflaton ϕ oscillates near the minimum of its potential after inflation and decays into elementary particles. However, due to the cusp of the potential, the oscillating behavior of the inflaton is very different from that of smooth potentials like ϕ^2 and ϕ^4. It has recently been shown that an efficient parametric resonance can occur during preheating for an inflaton potential of the form of eq. (1) with $0 < p \leq 2$, if the inflaton is coupled to a scalar matter field χ via an interaction term $\phi^2 \chi^2$ [14]. However, the production of gravitational waves has not been studied to our knowledge. In this letter, we are interested in gravitational wave production during oscillations of the inflaton after inflation with cuspy potentials. We find that the non-smooth oscillations can trigger amplification of fluctuations of the inflaton itself at the moment when $\phi(t) = 0$, so that oscillons copiously form after inflation. As in the models with symmetric smooth potential [15] and an asymmetric smooth potential [16], the oscillon formation in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted. Interestingly, in the models with cuspy potentials sources a stochastic asymmetric smooth potential [16], the oscillon formation is imprinted.
tional waves during preheating in the models \(1\) with cuspy potentials. The publicly available C++ package LATTICEEASY has been developed for more generally calculating the evolution of interacting scalar fields in an expanding Universe using a staggered leapfrog algorithm, which allows us to simultaneously solve the Friedmann equations and the inflaton evolution equation in an FRW Universe. To calculate the energy spectrum \(\Omega_{GW} h^2\) of gravitational waves, the gravitational wave equation \(4\) needs be solved in an expanding Universe. The spectral method can directly solve for the evolution of \(h_{ij}\) sourced by the transverse-traceless part of the anisotropic stress tensor \(T_{ij}\) in Fourier space \(18\). Actually, one can first evolve the tensor perturbations in configuration space sourced by the anisotropic stress tensor \(T_{ij}\) instead of its transverse-traceless part and then apply the transverse-traceless projector to the real physical \(h_{ij}\) in Fourier space \(19\). Another method is based on the Green’s functions in Fourier space to calculate numerically the energy spectrum of gravitational waves generated well inside the horizon \(20\). In our lattice simulations we adopt the configuration-space method for solving the following evolution equation of the tensor perturbations

\[
\ddot{u}_{ij} + 3H\dot{u}_{ij} - \frac{1}{a^2}\nabla^2 u_{ij} = \frac{2}{M_p^2 a^2} T_{ij}, \tag{7}
\]

Therefore, the transverse-traceless tensor perturbations can be written as \(h_{ij}(t, \mathbf{k}) = \Lambda_{ij,lm}(\mathbf{k}) u_{lm}(t, \mathbf{k})\), where \(\Lambda_{ij,lm}(\mathbf{k})\) is the transverse-traceless projector and \(u_{lm}(t, \mathbf{k})\) is the Fourier transform of the solution to the equation \(7\). The energy density of gravitational waves can be expressed in terms of \(u_{ij}\) as

\[
\rho_{GW} = \frac{M_p^2}{4L^3} \int d^3k \Lambda_{ij,lm}(\mathbf{k}) \dot{u}_{ij}(t, \mathbf{k}) \dot{u}_{lm}(t, \mathbf{k}). \tag{8}
\]

We perform three-dimensional lattice simulations with 256\(^3\) points in a box with periodic boundary conditions assuming \(\lambda = 1.26 \times 10^{-12}\) in the linear potential model. We set the initial values of the inflaton, its derivative and the scale factor as \(\phi_i = 0.75 M_p, \dot{\phi}_i = 6.8 \times 10^{-4} M_p^2\) and \(a_i = 1\). The inflaton fluctuations and its derivative are initialized by quantum vacuum fluctuations, while the tensor fluctuation and its derivative are initialized as zero. We stop the simulation when the energy spectrum of gravitational waves does not grow significantly. The energy spectrum and its frequency at the end of simulations are converted to the present values. Fig. 2 shows the time evolution of the energy density as a function of position on a two-dimensional slice through the simulation from \(a(t) = 6.13\) (top-left), to 6.81 (top-right), to 7.43 (bottom-left) and 13.4 (bottom-right) in the linear potential model. We can see that at the beginning, oscillons copiously form and then decay during oscillations of the inflaton. In this model, the rapid growth of oscillons results in the production of gravitational waves with \(\Omega_{GW} h^2 \sim 2 \times 10^{-9}\) today. Our lattice simulation results show that there appear two peaks in the energy spectrum of gravitational waves, a feature very distinct from that of other models. Therefore, our model can be distinguished from the production of gravitational waves during preheating by future gravitational wave detectors. A phenomenological study of gravitational waves produced from preheating with a time dependent resonance parameter \(q(t)\) was recently undertaken \(22\). For some choices of \(q(t)\), one also finds a gravitational wave spectrum with multiple peaks due to non-linear effects. Our model provides an explicit realization of this phenomenon.

The evolution of the spectrum goes through two different stages, the linear growth stage and nonlinear growth stage. In the first stage, as shown in Fig. 3 the small-\(k\) modes of the field \(\phi\) exponentially grow due to the cusp of the potential until the turning point \(a(t) = 7.12\). The linear growth is more efficient than those driven by the symmetric potential \(13\) and asymmetric potential \(16\). This leads to the left peak in the energy spectrum of gravitational waves, which is characteristic of the cuspy potential. In the second stage, from Fig. 3 we see that the small-\(k\) modes begin to drop and the large-\(k\) modes continue to grow. It implies that the energy flows from the small-\(k\) modes to the large-\(k\) modes, as discussed in detail in \(19\). This leads to the right peak in the energy spectrum of gravitational waves.

Moreover, from the lattice simulations of preheating in the models \(1\) with \(p = 2/3\) and \(p = 2/5\), we find that the energy spectra of gravitational waves peak at around \(\Omega_{GW} h^2 \sim 1.2 \times 10^{-9}\) and \(\Omega_{GW} h^2 \sim 4 \times 10^{-10}\), respectively, which are lower than the one in the linear potential model. Although the energy density \(\rho_{GW}\) increases more than in the \(p = 1\) case when \(|\phi|\) tends to zero, as shown in Fig. 4, a sudden decease follows, which may suppress the production of gravitational waves.

In our analysis, we have neglected the interactions between the inflaton \(\phi\) and other matter fields. If the in-
flaton is coupled to a matter field \(\chi \), broad parametric resonance leads effectively to a fast growth of the fluctuations of \(\chi \) \cite{footnote}. However, our numerical simulations confirm that the growth of the inflaton fluctuations themselves triggered by the cusp in its potential is more effective than that of the field \(\chi \) by parametric resonance.

Therefore, gravitational waves are sourced mainly by the inflaton fluctuations, even if a parametric resonance for the field \(\chi \) occurs in this model.

Observational Implications. As found in \cite{footnote}, the
peak amplitude of the energy spectrum of gravitational waves needs not depend on the energy scale of inflation, while the peak frequency scales inversely with the energy scale of inflation. In the single-field slow-roll inflationary scenario, if $\lambda \approx 3 \times 10^{-10}$ is fixed by the amplitude of the primordial power spectrum of curvature perturbations $A_s = 2.2 \times 10^{-9}$ \cite{11}, the peak frequency of gravitational waves today is fixed to be $f \sim 10^9$Hz, many orders of magnitude beyond the frequencies that can be reached by current gravitational-wave detection experiments.

If the model parameter λ is not fixed by the amplitude of the primordial power spectrum of curvature perturbations, the sensitivity of advanced LIGO (aLIGO) is expected to be significantly improved, which allows us to possibly observe gravitational waves produced during oscillations of inflaton after inflation. For example, in the hybrid inflationary scenario \cite{21}, since ϕ is not necessarily the inflaton itself, λ becomes essentially a free parameter. In this case we have plotted in Fig. 4 the present-day energy spectra of gravitational waves produced during oscillon formation in the linear potential model \cite{11} with $\lambda = 7.5 \times 10^{-43}$ (blue) and $\lambda = 9.72 \times 10^{-40}$ (green), the peaks of which lie above the expected sensitivity curve of the fifth observing run (O5) of the aLIGO-Virgo detector network \cite{22}. From Fig. 4 we can see that there are two peaks in the energy spectrum of gravitational waves, which differ from other spectra of gravitational waves produced during preheating. A detection of the second peak may require corroborations from other gravitational wave detectors such as the Big Bang Observatory (BBO).

To summarize, we have studied the production of gravitational waves during oscillon formation after inflation with cuspy potentials. At the end of inflation, oscillon formation can be triggered by the particular oscillations of the inflaton around the minimum of its potential, which sources a characteristic double-peak spectrum of gravitational waves. The discovery of such a background would open a new observational window into inflationary physics.

This work is supported in part by the National Natural Science Foundation of China Grants No.11690021, No.11690022, No.11575272, No.11335012, No.11375247 and No.11435006, in part by the Strategic Priority Research Program of the Chinese Academy of Sciences Grant No. XDB23030100 and by Key Research Program of Frontier Sciences, CAS. GS is supported in part by the DOE grant DE-FG-02-95ER40896 and the Kellett Award of the University of Wisconsin.

\begin{thebibliography}{100}
\bibitem{1} Electronic address: guozk@itp.ac.cn
\bibitem{2} Electronic address: cairg@itp.ac.cn
\bibitem{3} Electronic address: shiu@physics.wisc.edu
\bibitem{9} F. Marchesano, G. Shiu and A. M. Uranga, JHEP 1409, 184 (2014) [arXiv:1404.3040 [hep-th]].
\bibitem{12} L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994) [hep-th/9405157].
\bibitem{14} R. Easther and E. A. Lim, JCAP 0604, 010 (2006) [astro-ph/0601617].
\bibitem{25} B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Phys. Rev. Lett. 116, no. 6, 061102 (2016) [arXiv:1602.03837 [gr-qc]].
\end{thebibliography}