A Vaccinia Virus Armed with Interleukin-10 Is a Promising Therapeutic Agent for Treatment of Murine Pancreatic Cancer

Louisa S. Chard1, Eleni Maniati2, Pengju Wang3, Zhongxian Zhang5, Dongling Gao3, Jiwei Wang3, Fengyu Cao3, Jahangir Ahmed1, Margueritte El Khouri1, Jonathan Hughes1, Shengdian Wang4, Xiaozhu Li4, Bela Denes5, Istvan Fodor5, Thorsten Hagemann2, Nicholas R. Lemoine1,3, and Yaohe Wang1,3

Abstract

Purpose: Vaccinia virus has strong potential as a novel therapeutic agent for treatment of pancreatic cancer. We investigated whether arming vaccinia virus with interleukin-10 (IL10) could enhance the antitumor efficacy with the view that IL10 might dampen the host immunity to the virus, increasing viral persistence, thus maximizing the oncolytic effect and antitumor immunity associated with vaccinia virus.

Experimental Design: The antitumor efficacy of IL10-armed vaccinia virus (VVLΔTK-IL10) and control VVLΔTK was assessed in pancreatic cancer cell lines, mice bearing subcutaneous pancreatic cancer tumors and a pancreatic cancer transgenic mouse model. Viral persistence within the tumors was examined and immune depletion experiments as well as immunophenotyping of spleenocytes were carried out to dissect the functional mechanisms associated with the viral efficacy.

Introduction

Pancreatic cancer is the fourth leading cause of cancer-related death worldwide (1) and remains consistently lethal with a 5-year survival rate of less than 5%. This situation signifies a need for radically new therapeutic strategies that are not subject to cross-resistance with conventional therapies.

Oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells and induce antitumor effects. An engineered replication-competent Adenovirus, dl1520 (ONYX-015), was the first of these viruses to be tested for human pancreatic cancer treatment. The treatments were well tolerated, but no objective responses with virus therapy alone were seen in any of the patients (2).

Vaccinia virus has strong potential for exploitation as both an oncolytic agent and vector for therapeutic gene delivery to tumors. Extremely promising clinical trial data have recently emerged in which GM-CSF–armed vaccinia virus induced objective responses in patients with liver, colon, kidney, and lung cancer and melanoma (3, 4). Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent, including fast and efficient replication with rapid cell-to-cell spread, natural tropism for tumors, a well-documented safety record, and an ability to replicate in many different cell types, a feature not shared by adenoviruses. We recently demonstrated that hypoxia, which contributes to the aggressive and treatment-resistant phenotype of pancreatic ductal adenocarcinoma (PDAC; ref. 5), does not inhibit and may even enhance the potency of oncolytic vaccinia virus (6). In addition, vaccinia virus has recently been shown to be effective at human tumor targeting after intravenous delivery (4).

Interleukin-10 (IL10), first described as a factor produced by Th2 clones capable of inhibiting Th1 cytokine production (7), is a potent inhibitor of T cell–mediated antiviral responses by prevention of dendritic cell (DC) activation of the CD4+ Th1 inflammatory pathway (8, 9). IL10 is a key player in the establishment...
Translational Relevance

Oncolytic virotherapy is beginning to show promise as a realistic alternative to standard cancer therapeutics. To date, clinical trials have proved this strategy safe and well tolerated by patients; however, clinical responses after treatment with virus alone have been modest. A new generation of oncolytic viruses that engage the host immune system in the attack against the tumor are providing more encouraging clinical results. This study demonstrates that vaccinia virus armed with the cytokine interleukin-10 (IL10) is a novel and extremely promising therapeutic for treatment of pancreatic tumors and prevention of disease recurrence. Understanding the mechanisms by which IL10 improves oncolytic virotherapy provides a foundation for the rational design of clinical trials for treatment of pancreatic cancer and other solid tumors with this virus and provides valuable information for the design of future antitumor strategies that aim to combine oncolytic virotherapy with immunotherapeutic approaches.

Materials and Methods

Cell lines and viruses

The murine PDAC cell line DT6606 and the preinvasive pancreatic cancer (PanIN) cell line DT4994 were cultured from LSL-KrasG12D;Pdx-1-Cre mice that had developed PDAC (29). These were kindly provided by David Tuveson (Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom; now at Cold Spring Harbor Laboratory). The DT6606-ovalbumin (OVA) stable cell line was created by transfection of DT6606 cells at with pc3-neo-cOVA (Addgene) using Effectene transfection reagent (Qiagen) according to the manufacturers' protocol. CV1 (African monkey kidney) cells and PT45 (human pancreatic carcinoma) cells were obtained from the American Type Culture Collection (ATCC).

Construction and production of recombinant vaccinia virus

Lister strains VVL⃗TK-IL10 (rVV-IL10, armed with murine IL10) and VVL⃗TK (rVV-L15) were previously described (30, 31).

Vaccinia virus replication assay

Appropriate cell lines were seeded in triplicate and infected 16 hours later with VVL⃗TK or VVL⃗TK-IL10 at a multiplicity of infection (MOI) of 1 plaque-forming unit (PFU) per cell. Cells and supernatant were collected at 24, 48, and 72 hours after infection and titers were determined by measuring the median tissue culture infective dose (TCID50) on indicator CV1 cells. The Reed–Muench mathematical method was used to calculate the TCID50 value for each sample (32). Viral burst titers were converted to PFU per cell based on the number of cells present at viral infection. One-way ANOVA followed by Bonferroni post-test was used to assess significance.

Cell cytotoxicity assay

The cytotoxicity of the viruses in each cell line was assessed 6 days after infection with virus using an MTS nonradioactive cell proliferation assay kit (Promega) according to the manufacturer’s instructions, which allowed determination of an EC50 value (dose required to kill 50% of cells).

Real-time quantitative PCR

Subcutaneous tumors collected from treated mice were homogenized before DNA was extracted using the QIAamp DNA Blood Mini Kit (Qiagen Ltd.) according to the manufacturer’s instructions. TaqMan system primers and probes (Supplementary Table S1) were designed using Primer Express v3.0 software (Applied Biosystems) and constructed by Sigma-Aldrich and Applied Biosystems, respectively. Samples, controls, and standards were tested in triplicate by quantitative polymerase chain reaction (qPCR) using 7500 Real-time PCR System. Results were normalized to NanoDrop readings and expressed as genome copy number/0.01 g tumor tissue. One-way ANOVA followed by Bonferroni post-test was used to assess significance.

IL10 and interferon-γ ELISA

IL10 or interferon-γ (IFNγ) protein levels were quantified using an IL10-specific or IFNγ-specific ELISA (R&D Systems) according to the manufacturer’s instructions. Where appropriate, data were normalized to cell number present at time of infection.
Splenocyte preparation
Splenocytes were extracted from mice, combined with complete T-cell medium (RPMI medium, 10% BCS, 1% penicillin–streptomycin, and 1% sodium pyruvate), and cells were separated using a 70-μm cell strainer. Cells were resuspended in red blood cell lysis buffer (Sigma-Aldrich), washed in PBS, and the pellet was resuspended in T-cell medium.

In vitro splenocyte restimulation
Cells (2 × 10^6) were aliquoted into each well of a 96-well plate in duplicate. Cells were restimulated with either a vaccinia virus–specific B8R peptide (TSYKFESV; Proimmune) at a final concentration of 20 μg/mL or 5 × 10^4 mitomycin C–treated DT6606-OVA cells. Restimulated splenocytes were incubated at 37°C/5% CO₂ for 72 hours and the supernatant was collected.

Tumor cell preparation
Tumor cell suspensions were prepared by incubation with 1% collagenase/hyaluronidase (STEMCELL TECHNOLOGIES) for 30 minutes at 37°C. Tumor cell suspensions were then incubated with 1% heat-inactivated BCS–1.0%NaNO₂ plus pentamer and incubating at room temperature for 10 minutes. Cells were washed before being incubated in FB plus appropriate fluorescent marker-conjugated anti-immune cell marker antibodies for 30 minutes on ice. Cells were washed and fixed in 2% formalin before analysis using a BD LSR Fortessa flow cytometer. Data were analyzed using Flowjo software (TreeStar Inc).

In vivo studies
All animal studies were carried out under the terms of the Home Office Project Licence PPL 70/6030 and subject to Queen Mary University of London ethical review, according to the guidelines for the welfare and use of animals in cancer research (33). The C57/BL6 mouse is H-2 haplotype-identical to the K-ras transgenic mouse model of pancreatic cancer (29). Mice were treated when they reached 2.5 months, previously demonstrated to be the mean age at which PanIN has progressed to PDAC (29). Mice were treated i.p. with 2 × 10^7 PFU/injection VVLATk or VVLATk-IL10 on days 1, 3, and 5. Mice were examined daily for signs of disease progression and culled when they showed symptoms of sickness. Survival data were compared using Prism (GraphPad Software) and a log-rank (Mantel Cox) test was used to determine significance of survival differences.

Results
VVLATk-IL10 replicates efficiently in vitro in murine cancer cell lines derived from a transgenic mouse model of pancreatic cancer
To determine whether inclusion of IL10 affected on characteristics of VVLATk in vitro, replication and cytotoxicity in three cell lines were examined; DT6606, representing late-stage invasive PDAC and DT4994, representing PanIN, were both derived from the K-ras transgenic mouse model of pancreatic cancer (29). DT6606-OVA, in which the OVA antigen is overexpressed in PDAC and DT4994, representing PanIN, were both derived from the K-ras transgenic mouse model of pancreatic cancer (29). Mice were treated when they reached 2.5 months, previously demonstrated to be the mean age at which PanIN has progressed to PDAC (29). Mice were treated i.p. with 2 × 10^7 PFU/injection VVLATk or VVLATk-IL10 on days 1, 3, and 5. Mice were examined daily for signs of disease progression and culled when they showed symptoms of sickness. Survival data were compared using Prism (GraphPad Software) and a log-rank (Mantel Cox) test was used to determine significance of survival differences.

In vivo imaging
Seven days after treatment of KPC or KP mice, the biodistribution of VVLATk was determined in anesthetized animals (2% isoflurane inhalation) after i.p. injection of α-luciferin (150 mg/kg; Xenogen) and fluorescence measured with the IVIS camera (Xenogen Corp.).

Histopathologic examination and immunohistochemistry for viral proteins
KPC or control KP mice (2.5-month old) were treated i.p. with 2 × 10^7 PFU/injection VVLATk or VVLATk-IL10 on days 1, 3, and 5. On relevant days, animals were sacrificed, the pancreas removed, snap-frozen, and stored at –80°C. Frozen tissue was processed for immunohistochemistry (IHC) analysis of vaccinia virus coat protein [1:50 rabbit anti-vaccinia virus coat protein polyclonal antibody (MorphoSys UK Ltd.)], macrophage [1:2,000 anti-F4/80 antibody (Serotec)], CD3^+ T cell [1:200 anti-CD3 antibody (BioLegend)], or CD8^+ T cell [1:300 anti-CD8 antibody (BioLegend)] as described previously (31).
of this therapy into human cells. VVL\textsubscript{ATK}-IL10 showed efficient replication, cytotoxicity, and IL10 expression in this cell line (Supplementary Fig. S1).

VVL\textsubscript{ATK}-IL10 shows superior antitumor efficacy compared with VVL\textsubscript{ATK} in immunocompetent mouse models of pancreatic cancer

In vivo efficacy of VVL\textsubscript{ATK}-IL10 was examined using a subcutaneously established pancreatic cancer model. DT6606 subcutaneous tumors were established in male C57/BL6 mice and the animals received i.t. injections of 1×10^6 PFU of VVL\textsubscript{ATK}, VVL\textsubscript{ATK}-IL10, or PBS daily for 5 days. The selected viral dose was 10 times lower than the most commonly reported 1×10^6 PFU/dose in the literature (34). Both VVL\textsubscript{ATK} and VVL\textsubscript{ATK}-IL10 demonstrated antitumor efficacy (Fig. 2A). However, treatment with VVL\textsubscript{ATK}-IL10 resulted in a superior antitumor efficacy by day 44, with 87.5% of mice showing tumor clearance and significantly improved overall survival rates compared with both VVL\textsubscript{ATK} and PBS-treated animals (Fig. 2B). The C57/Black6 mouse is H-2 haplotype-identical to the injected DT6606 cells. Growth of tumors in PBS-treated animals confirmed that there was no immunologic rejection of the DT6606 cell line due to MHC or minor antigen mismatches.

To determine whether VVL\textsubscript{ATK}-IL10 remained efficacious in a more pathologically relevant model of pancreatic cancer, KPC transgenic mice were used. In these mice, pancreas-specific expression of mutant KrasG12D and Tp53R172H results in progressive development of PDAC (35). Three doses of virus (2×10^6 PFU/day) were given i.p. to 2.5-month old, PDAC-bearing mice. To confirm the specificity of virus for pancreatic tumors after i.p. injection, VVL\textsubscript{ATK}, which expresses a luciferase transgene in the viral TK region, was injected into either experimental KPC mice or control KP mice. Two days later, mice were imaged for luciferase expression (Fig. 2C). Strong luciferase signals were obtained specifically in the pancreatic area of KPC transgenic mice (Fig. 2C, left), while no signal was obtained from control mice (Fig. 2C, right). The vaccinia virus proteins were expressed in cancer cells and proliferative acinar cells in KPC mice (Fig. 2C, left, bottom), whereas no viral protein expression was observed in the ductal epithelial cells and acinar cells in KP mice (Fig. 2C, right, bottom), confirming
specificity of replication of TK-deleted vaccinia virus for pancreatic tumor cells. Efficacy of viral treatment in this model was assessed by survival (Fig. 2D). Treatment with VVLΔTK-IL10 resulted in significantly improved survival rates compared with treatment with VVLΔTK. Mean survival time for VVLΔTK-IL10–treated animals after commencement of treatment was 138.5 days compared with 69.7 days for VVLΔTK–treated animals, suggesting VVLΔTK-IL10 as an extremely effective treatment for PDACs even in the most complex murine models of the disease.
Treatment with VVLATK-IL10 results in long-term protection against disease recurrence

Successful OV strategies aim not only to eradicate the primary tumor, but also to induce long-term antitumor immunity to prevent disease recurrence. Thus, animals were rechallenged with 4×10^6 DT6606 cells 4 weeks after complete regression of the primary tumor (Fig. 3A). Treatment with both viruses resulted in long-term immunity to DT6606 tumor cells as evidenced by rapid clearance of these cells that necessitated no further viral treatments. Interestingly, VVLATK-IL10–treated animals were able to clear the secondary tumor more quickly and more consistently than VVLATK-treated animals.

CD8$^+$ and CD4$^+$, but not NK cells, are required for VVLATK-IL10 efficacy in vivo

Long-term immunity suggests an activation of specific antitumor immune responses after treatment. To assess the contribution of different immune cells to treatment efficacy, CD8$^+$, CD4$^+$, or NK immune subsets were depleted from mice before treatment of subcutaneous DT6606 tumors with VVLATK-IL10 (Fig. 3B). Depletion of both CD4$^+$ and CD8$^+$ cells had a significantly detrimental effect on the efficacy of treatment, suggesting VVLATK-IL10 is acting via these immune subsets to eliminate the tumor. Surprisingly, given previous reports that IL10 can activate NK cells to mediate tumor clearance (17), depletion of NK cells in our experiment had no effect on treatment efficacy.

Tumor-associated activated T-cell and macrophage populations are altered after treatment with VVLATK-IL10 compared with VVLATK, which affects viral persistence

Given the involvement of T cells in VVLATK-IL10 treatment efficacy, tumor T-cell populations were analyzed in more detail. Pancreatic tumors of KPC transgenic mice treated as previously were harvested posttreatment and T-cell populations analyzed by IHC. We noted a significant increase in CD3$^+$ CD8$^+$ infiltrate after treatment with both viruses compared with PBS (Supplementary Fig. S2) and a significant increase in CD3$^+$ CD8$^+$ cells in VVLATK-IL10–treated animals at day 22 after infection compared with VVLATK–treated animals.

DT6606-subcutaneous tumors were also harvested for analysis of T-cell populations by FACS. In accordance with data obtained from KPC mice, we found a significant increase in tumor T-cell infiltrate after treatment with both viruses, with a significant increase in CD8$^+$ infiltrate into tumors of VVLATK-IL10–treated animals (Fig. 4A). However, most interesting was that in CD4$^+$ (data not shown) and, more significantly, CD8$^+$ populations (Fig. 4B), the proportion of activated (CD45RBhi/CD44hi) T cells in tumors treated with VVLATK was higher than those treated with VVLATK-IL10. IFNγ expression within VVLATK-IL10–treated tumors was also significantly reduced compared with VVLATK–treated tumors (Fig. 4C).

Tumor-associated macrophage populations were also assessed in KPC (Supplementary Fig. S3) and DT6606 tumor-bearing mice (Fig. 4D) after infection. We found that treatment with either virus increased macrophage infiltrate into tumors of KPC mice compared with PBS, but that treatment with VVLATK-IL10 resulted in a reduced macrophage tumor infiltrate compared with treatment with VVLATK. This result was mirrored in DT6606 tumor-bearing mice. Further assessment of macrophage activation status in the DT6606 subcutaneous model revealed that VVLATK-IL10 induces a downregulation of MHCII expression compared with VVLATK (Fig. 4E).

To assess the impact of these phenomena on viral persistence, viral DNA load in the tumors (6 mice/group/time point) was analyzed after i.t. treatment at days 8, 16, and 24 after infection using qPCR (Fig. 4F, i) and TCD$_{50}$ (Fig. 4F, ii). We found that by day 24, both viruses had been cleared from the tumor to the same extent, but at days 12 and 16, significantly more VVLATK-IL10 was recovered from tumors than VVLATK, indicating a delay in clearance of VVLATK-IL10 compared with VVLATK. These results were confirmed by IHC analysis of viral load in pancreatic tumors of KPC mice (Supplementary Fig. S4).

The splenic CD4$^+$ and CD8$^+$ cell populations are altered after treatment with VVLATK-IL10 compared with treatment with VVLATK

It is clear that VVLATK-IL10 treatment efficacy involves modulation of the immune system, thus splenic immune cell population dynamics in response to treatment were assessed in greater detail.

Figure 3. Immune system involvement in the efficacy of VVLATK-IL10 in vivo. A, mice that had cleared tumors after i.t. treatment with VVLATK or VVLATK-IL10 during efficacy experiments were rechallenged 4 weeks later in the opposite flank with 4×10^6 DT6606 cells and tumor growth measured as previously. VVLATK $n = 3$, VVLATK-IL10 $n = 6$. Mean tumor size ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. *, $P < 0.05$; **, $P < 0.01$. B, DT6606 tumors were established in male C57/Black6 mice as described previously and 1 day before commencement of viral treatment, rat anti-mouse CD4, CD8, NK, or control monoclonal antibodies were injected i.p. Injections were continued twice weekly for the duration of the experiment and FACS analysis used to confirm depletion. Mean tumor size ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. *, $P < 0.05$; **, $P < 0.01$ ($n = 5$ group).
DT6606 tumor-bearing mice were treated as described and their spleens collected and assessed for presence of various immune cell subsets. No differences were found in splenic B cell (B220+ cells), Treg (CD4+ CD25hi cells), NK (CD3− CD49b+ cells), or NKT populations (CD3+, CD49b+ cells) after treatment with either virus compared with PBS-treated animals (Supplementary Fig. S5).

Analysis of CD4+ and CD8+ populations revealed that frequencies of these populations were altered at early time points (Fig. 5A and D; Supplementary Fig. S6). At days 8 and 16, a significant increase in the frequency of total CD8+ cells was seen after treatment with either virus; however, VVLATK-IL10 treatment resulted in fewer total CD8+ cells than treatment with VVLATK (Fig. 5D). This phenomenon was also observed in the CD4+ populations at day 16 after treatment (Fig. 5A).

Further examination revealed that treatment with VVLATK-IL10 or VVLATK, T-cell populations shifted toward an effector/memory phenotype (Fig. 5B–F) at days 8 and 16. However, VVLATK-IL10 induced statistically fewer activated CD4+ and CD8+ T cells than VVLATK at days 8 and 16 after infection (Fig. 5B–F), as noted previously within the tumor.

VVLATK-IL10 treatment results in reduced antiviral immune responses compared with treatment with VVLATK, but an increased frequency of tumor-specific T cells

To clarify the proportions of virus-specific and tumor-specific splenic effector CD8+ cells elicited after treatment with VVLATK and VVLATK-IL10, splenocytes from DT6606-OVA tumor-bearing animals were analyzed. For virus-specific T cells, an MHCI-specific pentamer against an immunogenic vaccinia virus antigen, B8R, was used (Fig. 6A and Supplementary Fig. S7A). As expected, viral treatment resulted in detection of B8R-specific CD8+ cells in both treatment groups. However, VVLATK-treated animals had a significantly higher proportion of B8R-specific T cells than VVLATK-IL10–treated animals at all time points, suggesting a decreased virus-specific immune response after treatment with VVLATK-IL10, which could account for the fewer effector CD8+ cells noted after VVLATK-IL10 treatment. We confirmed the decreased frequency of antivirus-specific T cells using an in vitro restimulation assay, in which IFNγ production from splenocytes in response to B8R peptide restimulation was measured (Fig. 6B). At all time points, significantly less IFNγ was detected from VVLATK-IL10 treatment groups compared with VVLATK treatment groups.

To assess T-cell reaction to tumor antigens, an MHCI OVA-specific pentamer was used in FACS staining (Fig. 6C and Supplementary Fig. S7B). At day 8, no differences in OVA-specific CD8+ T cells was observed after treatment with either virus when compared with PBS; however, by day 16, VVLATK-IL10–treated animals showed an increase in production of OVA-specific antigens compared with VVLATK–treated animals. This result was reflected in restimulation assays (Fig. 6D).

Taken together, these results indicate that although VVLATK-IL10 treatment resulted in a reduction in antiviral T-cell production, the frequency of antitumor-specific CD8+ T cells was comparable or even increased compared with VVLATK–treated mice.

Discussion

Efficacy of oncolytic virotherapy is dependent on both the oncolytic action of the virus itself and the effective stimulation of a local immune response to viral infection (36, 37). Oncolytic viruses may represent a method of achieving vaccination in situ, enabling the adaptive arm of the immune system to clear residual disease and provide long-term surveillance against relapse. To date, however, the use of oncolytic viruses alone has proved unsuccessful in clinical trials and this is likely due to their early clearance preventing their oncolytic effects and an effective immune-stimulating release of tumor-associated antigens (TAAs).

Many viruses encode homologs of the cytokine IL10, generally considered immunosuppressive, to dampen the antiviral immune response and circumvent early viral clearance (11, 38). We aimed to adopt this natural strategy of viruses by arming vaccinia virus with IL10, which has been reported to be effective at prevention of vaccinia virus clearance (39). We hypothesized that prolonging viral persistence in the host would improve the antitumor efficacy by enhancing both the direct oncolytic effect and release of TAAs.

The pancreatic cancer subcutaneous tumor model we developed was based on the use of a DT6606 cell line, which was originally derived from the transgenic KPC spontaneous model of pancreatic cancer (29), and therefore accurately reflect the PDAC populations of cells within these mice. Previous study has demonstrated that these cancer cells resemble human PDAC in many respects, including their expression of oncogenic KrasG12D and the TAA mesothelin, and both spontaneous and subcutaneous tumors show similar histopathologic features such as the presence of FAP+ stromal cells (40).

The long-held paradigm of IL10 function suggests it as an immunosuppressive cytokine, commonly investigated therapeutically in the context of treatment for inflammatory autoimmune conditions and allograft survival (41, 42). However, using these two different murine models of pancreatic cancer, we observed significantly enhanced therapeutic responses after treatment with our IL10-armed vaccinia virus compared with unarm ed virus. In both models, low doses of the virus were sufficient to induce objective responses and in agreement with previous reports, no IL10-related toxicity was observed (43). Treatment also resulted in rejection of tumors after rechallenge, confirming the development of effective long-term immunity against tumor antigens. These results are consistent with those of others investigating the antitumor properties of IL10 in which systemic administration of recombinant protein or tumor cells transfected with IL10 induced tumor clearance and long-term memory responses in mice bearing sarcoma (16), melanoma (16, 44), colorectal cancers (16), breast cancers (45), and prostate cancer (20).

In vitro studies indicated that IL10 did not alter vaccinia virus replication or cytotoxicity and no effect on cell proliferation was observed. To determine other possible mechanisms for the superior efficacy associated with this virus, viral persistence within tumors was assessed. Although both IL10–armed and unarm ed viruses were effectively cleared from animals, greater titers of VVLATK-IL10 were recovered at days 12 and 16 compared with VVLATK in both the transgenic and subcutaneous models of pancreatic cancer, suggesting that IL10 could significantly delay viral clearance.

Given previous reports of the ability of IL10 to stimulate NK cells (17) and as a cytotoxic T-cell differentiation factor (46), we examined reliance of our treatment on these immune subsets. Depletion of NK cells had no effect on treatment efficacy in vivo and we found no evidence of altered splenic or tumor (data not shown) NK populations after treatment with VVLATK-IL10. In contrast, depletion of CD4+ and CD8+ T-cell populations had a negative impact on treatment efficacy. It has previously been
Figure 4.
Analysis of activated T cells, IFNγ expression, macrophage populations, and viral persistence in tumors. DT6606-OVA tumors were established and mice treated i.t. with VVLΔTK or VVLΔTK-IL10 following the same regimen as described for efficacy experiments. At days 10 and 15, tumors were harvested and analyzed using FACS analysis (n = 3/group). A, CD8+ T cells as assessed by analysis of CD3+/CD8+ populations within CD45+ populations. Mean populations ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. B, activated CD8+ cells as assessed by analyzing CD44RBloCD44hi populations within the CD8+ population. Mean populations ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. *P < 0.05; **P < 0.01. C, IFNγ expression within tumors was assessed by ELISA using tumor homogenates after treatment. Mean concentration/0.1 g tumor ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. D, DT6606-OVA tumors were established and mice were treated i.t. with VVLΔTK or VVLΔTK-IL10 following the same regimen as described for efficacy experiments. At days 8 and 16, tumors were harvested and analyzed for total macrophage populations using FACS analysis (n = 3/group). Macrophage activation status was also assessed using an MHCII marker, with MHCIIhi populations regarded as activated macrophages (E, i) and MHCIIlo populations regarded as naive macrophages (E, ii). (Continued on the following page.)
Figure 5.
Analysis of CD4⁺ and CD8⁺ populations and activation status in splenocytes of VVLΔTK-ΔIL10- or VVLΔTK-treated mice. DT6606-OVA tumors were established and mice treated i.t. with VVLΔTK or VVLΔTK-ΔIL10 following the same regimen as described for efficacy experiments. At days 8, 16, and 24, spleens were harvested and analyzed using FACS analysis (n = 6/group). A, CD4 populations as a percentage of live cells in splenocytes of treated mice assessed by gating on CD3⁺CD4⁺ populations. B, naive CD4 cells as assessed by analyzing CD44⁺CD45RB lo populations within the CD4⁺ population. C, activated CD4 cells as assessed by analyzing CD44⁺CD45RB hi populations within the CD4⁺ population. D, CD8 populations in splenocytes of treated mice assessed by gating on CD3⁺CD8⁺ populations. E, naive CD8 cells as assessed by analyzing CD44⁺CD45RB lo populations within the CD8⁺ population. F, activated CD8 cells as assessed by analyzing CD44⁺CD45RB hi populations within the CD8⁺ population. Mean populations ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. *P < 0.05; **P < 0.01; ***P < 0.001. Representative FACS profiles with gating criteria are shown in Supplementary Fig. S6.

reported that progression from PanIN to PDAC is accompanied by progressive infiltration of T cells into the tumor in KPC transgene mice (47, 48); however, no antitumor response is induced by this infiltrate. Our analysis of T-cell populations in spleens and tumors revealed that treatment with both unarmed and IL10-armed viruses induced a high level of adaptive immunity in mice (Continued.) Mean populations ± SEM are displayed and compared by one-way ANOVA with post hoc Bonferroni testing. F, to assess viral persistence, DT6606 tumors were established and 18 mice per group treated i.t. with VVLΔTK or VVLΔTK-ΔIL10 following the same regimen as described previously. At days 8, 16, and 24, tumors were harvested, viral DNA extracted, and viral DNA levels quantified in relation to a standard curve using qPCR (i). Mean vaccinia virus copy number ± SEM is displayed and analyzed at each time point using a Student unpaired t test. **P < 0.01 (n = 6/group). Infectious virus recovered from homogenized tumors was also analyzed (ii). Mean viral replication ± SEM was determined by TCID₅₀ assay on CV1 cells. Statistical analysis was carried out using a Student unpaired t test at each time point. *P < 0.05.

www.aacrjournals.org
compared with untreated mice. However, an interesting finding was that the magnitude of the activated splenic CD4$^+$ and CD8$^+$ population response in VVLΔTK-IL10 treated mice was lower compared with the unarmed virus. This difference correlated with a reduction in virus-specific CD8$^+$ T cells and IFNγ recovery from tumors after VVLΔTK-IL10 treatment, which accounted for the delayed viral clearance from tumors. Interestingly, although VVLΔTK-IL10 treatment reduced antiviral CD8$^+$ populations, IL10 had no inhibitory effect on production of antitumor CD8$^+$ cells. Indeed, at day 16 after injection, an increase in anti-OVA CD8$^+$ cells was observed, which we postulate is a result of the increased oncolysis occurring with VVLΔTK-IL10 treatment, which improves TAA release.

These results suggest that IL10 improves the efficacy of OV by modulation of the early immune response to infection, resulting in dampening of antiviral, but not antitumor immunity. However, the mechanism by which IL10 elicits this alteration remains unclear. Our investigations revealed that local IL10 expression results in modification of the tumor macrophage population, which is highly sensitive to IL10 exposure (49). Numerous investigators have reported that IL10 can negatively regulate macrophages by (i) inhibiting their infiltration into tumors, and (ii) downregulating MHCII expression and suppressing production of proinflammatory cytokines and reactive nitrogen oxides (50).

Although we found that VVLΔTK-IL10 treatment increased macrophage infiltration into tumors in both the spontaneous and subcutaneous models of pancreatic cancer, we found that in accordance with previous data, VVLΔTK-IL10 treatment results in a significant downregulation of MHCII expression. Thus, it is feasible that in our model, tumor macrophages are responsible for viral antigen presentation to T cells and a reduction in macrophage activation by IL10 leads to reduced cross-priming of the antiviral immune response. A further consideration is that this model suggests distinct pathways of viral and tumor antigen presentation, which are the subject of ongoing investigation in our laboratory.

These findings demonstrate that IL10 armed vaccinia virus shows great promise as a novel therapeutic for pancreatic cancer, and that IL10 in combination with oncolytic virotherapy is clearly able to enhance tumor rejection through modulation of the innate and adaptive immune responses.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
Oncolytic Vaccinia Virus for Treatment of Pancreatic Cancer

Grant Support

This study was supported by The UK Charity Pancreatic Cancer Research Fund, the National Natural Science Foundation of China (81101608 and 81201792), Ministry of Sciences and Technology, China (2013DFG32080), the Henan Provincial Department of Science and Technology as well as the Department of Health, Henan Province, China (124200510018 and 104300510088).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 24, 2014; revised September 20, 2014; accepted September 28, 2014; published OnlineFirst November 21, 2014.

References

Authors’ Contributions

Conception and design: L.S. Chard, I. Fodor, N.R. Lemoine, Y. Wang.

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.S. Chard, E. Maniati, Z. Zhang, D. Gao, J. Wang, J. Ahmed, M. El Khouri, J. Hughes, B. Denes.

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): L.S. Chard, E. Maniati, J. Hughes, B. Denes, I. Fodor, Y. Wang.

Writing, review, and/or revision of the manuscript: L.S. Chard, E. Maniati, J. Ahmed, J. Hughes, B. Denes, I. Fodor, N.R. Lemoine, Y. Wang.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.S. Chard, J. Wang, S. Wang, X. Li, T. Hagemann, Y. Wang.

Study supervision: I. Fodor, Y. Wang.
thymidine kinase and vaccinia growth factor genes.

