您当前的位置: > 详细浏览

塑料的生物降解:关键问题及进展

请选择邀稿期刊:
摘要: 2005 ~ 2017年间,世界塑料年产量从2.3亿吨增长到了4.0亿吨,预计到2050年,世界塑料年产量将达到34亿吨[1]。塑料消费产生的大量塑料废物,只有9%被回收利用,12% 被焚烧,79%被填埋或直接丢弃到环境中[2]。由于稳定的材料特性,塑料废物在自然条件下降解十分缓慢,预计到2050年,垃圾填埋场和自然环境中的塑料垃圾将达到120亿吨[2]。塑料垃圾在环境中的长期大量积累,给生态环境带来的严重污染和威胁,也成为一个全球性环境问题[3]。 随着一些塑料降解微生物或酶的发现,利用微生物或酶对塑料的降解作用,发展塑料污染的环境修复生物技术,已逐渐被意识到是一种解决塑料废物的新途径[4-6]。但是要实现塑料污染的高效生物降解和环境修复,有两大关键问题需要解决:1)塑料降解微生物或酶的来源。自19世纪40年代,塑料开始被人工合成并逐渐应用到生产生活之中,其出现历史不足80年。这么短的时间,被认为还不足以自然进化出广泛的塑料降解微生物或酶。探索自然界来源的塑料降解微生物和酶系统并加以利用,是开发塑料污染环境生物修复技术的重要基础性研究工作。2)塑料生物降解的速率。高分子长链的惰性化学结构单元、高分子链的大分子量和高分子链的聚集态结构等特征是阻碍影响微生物或酶降解塑料效率的重要因素。 针对这两个问题,作者开展了生物工程和高分子物理的交叉研究,取得了一些进展。1)揭示了昆虫及其肠道微生物是塑料分解微生物重要来源。从粮食害虫啮食塑料包装袋的自然现象受到启发,采用同位素示踪及多种物理化学分析技术,首次系统证实了黄粉虫能将PS长链分子解聚并分解为CO2;阐明了肠道微生物种群在塑料降解过程中起决定性作用。从黄粉虫和蜡虫肠道中分离出了降解聚苯乙烯(PS)、聚乙烯(PE)、聚氨酯(PUR)和聚对苯二甲酸乙二醇酯(PET)的细菌[4-5]。2)发现结晶高分子(如PE、PP和PET)的结晶度是影响生物分解速率的关键。微生物或酶在分解结晶高分子的过程中,优先分解高分子的无定形区,而对于结晶区分解十分缓慢,甚至不能分解[6]。结晶区的分子的堆砌形成的致密结构阻碍了酶残基对分子链的捕获。从高分子结晶热力学原理出发,提出一种不改变分子结构的基础上,实现结晶高分子向无定形的转变的去结晶化的方法,将结晶高分子的生物分解速率提高了100倍[7]。

版本历史

[V1] 2017-09-20 14:38:06 ChinaXiv:201709.00100V1 下载全文

相关论文推荐

点击下载全文
预览
许可声明
metrics指标
  •  点击量36995
  •  下载量1873
评论
分享