Current Location:home > Detailed Browse

Article Detail

基于深度学习的寒旱区多时序影像土地利用及变化监测 ——以新疆莫索湾垦区为例

Abstracts

针对生态环境脆弱的寒旱区开展地物要素提取以及土地覆盖变化监测研究,对农业规划、 城乡建设、生态环境监测与保护等具有重要意义。借助 2015—2019 年新疆莫索湾垦区 Landsat-8 影像构建数据集,对比 3 种传统方法:最大似然分类(Maximum likelihood classification,MLC)、支持 向量机(Support vector machine,SVM)和随机森林(Random forest,RF)及 5 种语义分割模型:Deep? Labv3+(Xception)、DeepLabv3+(MobileNet)、SegNet(ResNet50)、U-Net(MobileNet)和 PSPNet(Mo? bileNet),选取最优自动化地物提取模型对研究区 1998—2020 年农用地、建筑用地、水体和荒漠 4 种 地物要素进行分类,并运用土地利用转移矩阵和动态度进行定量动态变化分析。结果表明:Deep? Labv3+(Xception)模型可以实现更准确、更高效的地物提取,总体精确度(OA)、Kappa 系数和 F1 值 分别为 96.06%、0.96 和 0.86,其中所选模型的平均交并比(MIoU)较其他模型提升 0.03~0.39。近 23 a,莫索湾垦区的荒漠、农用地和建筑用地三者的土地结构转化较为明显,荒漠总面积减少 15.00%, 农用地总面积增加 12.68%,建筑用地总面积增加 2.53%,水体面积变化较为平稳。地物类型总体转变方向为荒漠向农用地转化、农用地向建筑用地转化。该研究可为深度学习技术应用于中分辨率遥感卫星影像领域中实现土地利用及变化动态监测提供参考。
Download Comment Cooperative journals:《干旱区地理》 Hits:2519 Downloads:186
Recommended references: 袁盼丽.(2021).基于深度学习的寒旱区多时序影像土地利用及变化监测 ——以新疆莫索湾垦区为例.干旱区地理.[ChinaXiv:202112.00064] (Click&Copy)
Version History
[V1] 2021-12-14 18:33:34 chinaXiv:202112.00064V1 Download
Related Paper

Download

Current Browse

Change Subject Browse

Cross Subject Browse

  • - NO