【目的】将维基百科蕴涵的世界知识以词向量方式融入TextRank 模型, 改进单文档关键词抽取效果。【方法】利用Word2Vec 模型基于维基百科中文数据, 生成词向量模型, 对TextRank 词图节点的词向量进行聚类以调整簇内节点的投票重要性, 结合节点的覆盖和位置因素, 计算节点之间的随机跳转概率, 生成转移矩阵, 最终通过迭代计算获得节点的重要性得分, 选取前TopN 个词语生成关键词。【结果】当TopN≤7 时, 词向量聚类加权方法均优于对比方法; TopN=3 时, F 值取得最大值, 比先前最优结果增量提升了3.374%; TopN>7 时,结果与位置加权法相似。【局限】聚类分析使得计算开销变高。【结论】词向量聚类加权能够改善关键词抽取效果。 |
Version History | ||||
---|---|---|---|---|
[V1] | 2017-11-08 16:30:53 | chinaXiv:201711.01966V1 | Download |
Related Paper |
---|