Current Location:home > Detailed Browse

Article Detail

基于卷积神经网络的轴承故障定性诊断

Submit Time: 2017-08-29
Author: 单建华 安徽工业大学 ; 吕钦 安徽工业大学 ; 张神林 安徽工业大学 ;
Institute: 1.安徽工业大学;

Abstracts

轴承定性诊断的传统方法需要复杂难懂的数学知识和高深的领域知识;基于深度置信网络的方法虽然克服了传统方法的缺点,但网络参数规模巨大,训练困难;基于时频图的卷积神经网络方法需用小波变换得到时频图。由于卷积神经网络具有强大的特征学习能力和泛化能力,提出了一种基于卷积神经网络的轴承故障定性诊断方法,直接利用一维振动信号对卷积神经网络进行训练。优势在于克服了传统方法的缺点;相比深度置信网络,网络参数少很多,训练高效;也无需小波变换得到时频图。采用西储大学和本实验室轴承数据,进行了一系列全面测试,表明本文方法能准确地定性诊断轴承故障,准确率高于其他所有方法;首次通过利用西储大学的轴承数据训练的卷积神经网络准确诊断了本实验室待测轴承的故障类型,这表明该方法能实际工程运用。
Download Comment Hits:6958 Downloads:4322
From: 单建华
DOI:10.12074/201708.00369
Recommended references: 单建华,吕钦,张神林.(2017).基于卷积神经网络的轴承故障定性诊断.[ChinaXiv:201708.00369] (Click&Copy)
Version History
[V1] 2017-08-29 10:23:12 chinaXiv:201708.00369V1 Download
Related Paper

Download

Current Browse

Cross Subject Browse